基于网络药理学和分子对接探讨宣白承气汤治疗重症肺炎的作用机制

作者

DOI:

https://doi.org/10.62177/fcdt.v1i6.989

关键词:

网络药理学, 分子对接, 宣白承气汤, 重症肺炎

摘要

目的:宣白承气汤是治疗重症肺炎的有效药物,但其作用机制尚不清楚。本研究通过网络药理学和分子对接揭示宣白承气汤治疗重症肺炎的作用机制。方法:从中药系统药理学数据库分析平台(TCMSP)数据库中选取宣白承气汤的有效成分和靶点,根据其吸收代谢特性进行筛选。重症肺炎相关治疗靶点收集自GeneCards数据库、TTD数据库、DisGeNet数据库、DrugBank数据库和OMIM数据库。利用Cytoscape软件构建中药-成分-靶点网络图。蛋白质-蛋白质相互作用网络由STRING数据库生成。基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路的富集分析由DAVID数据库进行。利用分子对接技术鉴定活性化合物与靶点之间的亲和力和活性。结果:在组件目标网络中有137个节点和371条边。degree值较高的化合物是Beta-sitosterol、l-SPD和Stigmasterol。在蛋白相互作用(PPI)网络中degree值较高的蛋白是CASP3、TP53和PTGS2。GO和KEGG结果显示,宣白承气汤治疗重症肺炎主要涉及药物应答、外源性刺激应答、RNA聚合酶II启动子转录、信号转导、缺氧应答、凋亡过程等生物学过程。信号通路主要包括p53信号通路、PI3K/AKT信号通路等。分子对接结果显示,Beta-sitosterol、l-SPD和Stigmasterol对CASP3、TP53和PTGS2具有较高的亲和力。结论:宣白承气汤可能通过多个成分、多个靶点、多条信号通路发挥治疗重症肺炎的作用机制。本研究不仅为开发预防和治疗重症肺炎的天然疗法提供新的见解,还为从中药中开发潜在的活性化合物提供了一种可行的方法。

参考

罗成,叶远航,盛国光,等.中医药治疗重症肺炎的研究进展[J]. 中国中医急症,2023,32(5):929-932.

罗成,叶远航,郑岚,等.中医药基于“肺-肠”轴调节肠道菌群治疗重症肺炎机制的研究进展[J].中国医药导报,2023,20(6):33-36.

Lenz H, Norby G O, Dahl V, et al. Five-year mortality in patients treated for severe community-acquired pneumonia - a retrospective study[J]. Acta Anaesthesiol Scand, 2017, 61(4): 418-426.

Qu J, Zhang J, Chen Y, et al. Aetiology of severe community acquired pneumonia in adults identified by combined detection methods: a multi-centre prospective study in China[J]. Emerg Microbes Infect, 2022, 11(1): 556-566.

Yang R, Yang H, Wei J, et al. Mechanisms Underlying the Effects of Lianhua Qingwen on Sepsis-Induced Acute Lung Injury: A Network Pharmacology Approach[J]. Front Pharmacol, 2021, 12: 717652.

罗成,叶远航,姜成,等.基于网络药理学和实验验证探讨宣白承气汤治疗急性肺损伤的作用机制[J].中国中药杂志,2024,49(16):4329-4337.

UniProt: a worldwide hub of protein knowledge[J]. Nucleic Acids Res, 2019, 47(D1): D506-D515.

Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses[J]. Curr Protoc Bioinformatics, 2016, 54: 1-30.

Zhou Y, Zhang Y, Lian X, et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents[J]. Nucleic Acids Res, 2022, 50(D1): D1398-D1407.

Amberger J S, Bocchini C A, Scott A F, et al. OMIM.org: leveraging knowledge across phenotype-gene relationships[J]. Nucleic Acids Res, 2019, 47(D1): D1038-D1043.

Pinero J, Ramirez-Anguita J M, Sauch-Pitarch J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update[J]. Nucleic Acids Res, 2020, 48(D1): D845-D855.

Wishart D S, Feunang Y D, Guo A C, et al. DrugBank 5.0: a major update to the DrugBank database for 2018[J]. Nucleic Acids Res, 2018, 46(D1): D1074-D1082.

Otasek D, Morris J H, Boucas J, et al. Cytoscape Automation: empowering workflow-based network analysis[J]. Genome Biol, 2019, 20(1): 185.

Szklarczyk D, Gable A L, Nastou K C, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49(D1): D605-D612.

Sherman B T, Hao M, Qiu J, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)[J]. Nucleic Acids Res, 2022, 50(W1): W216-W221.

罗成,宁博,张馨月,等.重症肺炎与信号通路的关系及中药调控进展[J].中国实验方剂学杂志,2025,31(8):294-302.

Zhang D, Li S, Wang N, et al. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases[J]. Front Microbiol, 2020, 11: 301.

王知兵,于克静,刘倩倩,等. 加味宣白承气汤辅助治疗重症创伤呼吸机相关性肺炎痰热壅肺证患者30例临床观察[J]. 中医杂志, 2023, 64(03): 269-274.

何金波,毛峥嵘,宋鹏阳. 加味宣白承气汤治疗重症肺炎合并急性胃肠损伤的临床研究[J]. 南京中医药大学学报, 2022, 38(02): 103-108.

俞荣明,胡爱浩. 宣白承气汤治疗对重症肺炎患者 CRP、TNF-α、IgG、IL-6及中医证候积分的影响[J]. 四川中医, 2021, 39(11): 96-99.

Khan Z, Nath N, Rauf A, et al. Multifunctional roles and pharmacological potential of beta-sitosterol: Emerging evidence toward clinical applications[J]. Chem Biol Interact, 2022, 365: 110117.

Yang L, Yao Y, Yong L, et al. Dopamine D(1) receptor agonists inhibit lung metastasis of breast cancer reducing cancer stemness[J]. Eur J Pharmacol, 2019, 859: 172499.

Bakrim S, Benkhaira N, Bourais I, et al. Health Benefits and Pharmacological Properties of Stigmasterol[J]. Antioxidants (Basel), 2022, 11(10).

Zhang X, Wang J, Zhu L, et al. Advances in Stigmasterol on its anti-tumor effect and mechanism of action[J]. Front Oncol, 2022, 12: 1101289.

Safdarpour S, Eftekhari Z, Eidi A, et al. Encapsulated saponin by ferritin nanoparticles attenuates the murine pneumococcal pneumonia[J]. Microb Pathog, 2022, 172: 105731.

Eskandari E, Eaves C J. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis[J]. J Cell Biol, 2022, 221(6).

Kuo W T, Shen L, Zuo L, et al. Inflammation-induced Occludin Downregulation Limits Epithelial Apoptosis by Suppressing Caspase-3 Expression[J]. Gastroenterology, 2019, 157(5): 1323-1337.

Komatsu R, Okazaki T, Ebihara S, et al. Aspiration pneumonia induces muscle atrophy in the respiratory, skeletal, and swallowing systems[J]. J Cachexia Sarcopenia Muscle, 2018, 9(4): 643-653.

Gou X, Xu W, Liu Y, et al. IL-6 Prevents Lung Macrophage Death and Lung Inflammation Injury by Inhibiting GSDME- and GSDMD-Mediated Pyroptosis during Pneumococcal Pneumosepsis[J]. Microbiol Spectr, 2022, 10(2): e204921.

Munoz-Fontela C, Mandinova A, Aaronson S A, et al. Emerging roles of p53 and other tumour-suppressor genes in immune regulation[J]. Nat Rev Immunol, 2016, 16(12): 741-750.

Levine A J. P53 and The Immune Response: 40 Years of Exploration-A Plan for the Future[J]. Int J Mol Sci, 2020, 21(2).

Harford J B, Kim S S, Pirollo K F, et al. TP53 Gene Therapy as a Potential Treatment for Patients with COVID-19[J]. Viruses, 2022, 14(4).

Mu S, Zhang J, Du S, et al. Gut microbiota modulation and anti-inflammatory properties of Xuanbai Chengqi decoction in septic rats[J]. J Ethnopharmacol, 2021, 267: 113534.

Downloads

How to Cite

叶远航, 柯佳, & 罗成. (2025). 基于网络药理学和分子对接探讨宣白承气汤治疗重症肺炎的作用机制. 临床诊断与治疗杂志, 1(6). https://doi.org/10.62177/fcdt.v1i6.989

栏目

文章

DATE

Received: 2025-12-28
Accepted: 2025-12-29
Published: 2025-12-31