Research Status of the Mechanism of Action of Danshen Dropping Pills on Diabetic Retinopathy
DOI:
https://doi.org/10.62177/apjcmr.v1i5.897Keywords:
Danshen Dropping Pills, Diabetic Retinopathy, Mechanism of Action, oxidative stress, inflammatory responseAbstract
Diabetic retinopathy (DR) is one of the common complications in patients with diabetes, which seriously affects the patient's vision and quality of life. With the increase in the number of patients with diabetes, the prevention and treatment of DR has become an urgent clinical problem to be solved. In recent years, Danshen dripping pills, as a traditional Chinese medicine preparation, have received widespread attention for its unique pharmacological effects. Studies have shown that Danshen Dropping Pills has a significant regulatory effect on retinal vascular damage, oxidative stress, inflammatory response and cell apoptosis. Current research results show that Danshen Dropping Pills can reduce retinal damage and improve the vision of diabetic patients through multiple mechanisms. However, in-depth research on its specific mechanism of action is still needed to better understand its potential application in the prevention and treatment of DR. This article aims to explore the mechanism of action of Danshen Dropping Pills in diabetic retinopathy by reviewing relevant literature and provide a theoretical basis for clinical application.
Downloads
References
Wei, L., Sun, X., Fan, C., Li, R., Zhou, S., & Yu, H. (2022). The pathophysiological mechanisms underlying diabetic retinopathy. Frontiers in Cell and Developmental Biology, 10, 963615. https://doi.org/10.3389/fcell.2022.963615
Seo, H., Park, S. J., & Song, M. (2025). Diabetic Retinopathy (DR): Mechanisms, Current Therapies, and Emerging Strategies. Cells, 14(5), 376. https://doi.org/10.3390/cells14050376
Tun, S. B. B., & Barathi, V. A. (2024). Akimba Proliferative Diabetic Retinopathy Model: Understanding Molecular Mechanism and Drug Screening for the Progression of Diabetic Retinopathy. In Methods in Molecular Biology (Vol. 2678, pp. 13–26). Springer. https://doi.org/10.1007/978-1-0716-3255-0_2
Zhu, H., Li, B., Huang, T., et al. (2025). Update in the molecular mechanism and biomarkers of diabetic retinopathy. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1871(5), 167758. https://doi.org/10.1016/j.bbadis.2025.167758
Alasbily, H., Ali Fahmi, F., Abdulhamid Abdala, M., et al. (2025). Metformin in Diabetic Retinopathy: Mechanisms, Therapeutic Potential, and Barriers. Cureus, 17(7), e87455. https://doi.org/10.7759/cureus.87455
Li, X., Fu, Y. H., Tong, X. W., et al. (2023). RAAS in diabetic retinopathy: mechanisms and therapies. Archives of Endocrinology and Metabolism, 68, e230292. https://doi.org/10.20945/2359-4292-2023-0292
Rohilla, M., Rishabh, Bansal, S., et al. (2024). Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy. Biomedicine & Pharmacotherapy, 169, 115881. https://doi.org/10.1016/j.biopha.2023.115881
Yang, L., Huang, X., Wang, Z., et al. (2025). Research progress on the pharmacological properties of active ingredients from Salvia miltiorrhiza: A review. Phytomedicine, 148, 157272. https://doi.org/10.1016/j.phymed.2025.157272
Cai, L., Chen, Y., Xue, H., et al. (2024). Effect and pharmacological mechanism of Salvia miltiorrhiza and its characteristic extracts on diabetic nephropathy. Journal of Ethnopharmacology, 319(Pt 3), 117354. https://doi.org/10.1016/j.jep.2023.117354
Zhang, L., Han, L., Wang, X., et al. (2021). Exploring the mechanisms underlying the therapeutic effect of Salvia miltiorrhiza in diabetic nephropathy using network pharmacology and molecular docking. Bioscience Reports, 41(6), BSR20203520. https://doi.org/10.1042/BSR20203520
Cui, S., Chen, S., Wu, Q., Chen, T., & Li, S. (2020). A network pharmacology approach to investigate the anti-inflammatory mechanism of effective ingredients from Salvia miltiorrhiza. International Immunopharmacology, 81, 106040. https://doi.org/10.1016/j.intimp.2019.106040
Ma, X. J., Yang, J., Ma, G. R., Zeng, W., Guo, J., & Ma, Y. (2022). Modernization of Chinese medicine Salviae Miltiorrhizae Radix et Rhizoma: a review. Zhongguo Zhong Yao Za Zhi, 47(19), 5131–5139. https://doi.org/10.19540/j.cnki.cjcmm.20220808.101
Wu, Y., Xu, S., & Tian, X. Y. (2020). The Effect of Salvianolic Acid on Vascular Protection and Possible Mechanisms. Oxidative Medicine and Cellular Longevity, 2020, 5472096. https://doi.org/10.1155/2020/5472096
Lu, K., Xia, Y., Cheng, P., et al. (2025). Synergistic potentiation of the anti-metastatic effect of a Ginseng-Salvia miltiorrhiza herbal pair and its biological ingredients via the suppression of CD62E-dependent neutrophil infiltration and NET formation. Journal of Advanced Research, 75, 739–753. https://doi.org/10.1016/j.jare.2024.10.036
Chen, Y., Liu, J., Zhang, J., Yang, L., & Jin, L. (2023). Research progress in the quality evaluation of Salvia miltiorrhiza based on the association of 'morphological features - functional substances - pharmacological action - clinical efficacy'. Heliyon, 9(10), e20325. https://doi.org/10.1016/j.heliyon.2023.e20325
[Author Unknown]. (n.d.). Denpasar Declaration on Population and Development. Integration, (40), 27–29. https://doi.org/10.1234/2013/999990
Sharma, A., Schwartz, S. M., & Méndez, E. (2013). Hospital volume is associated with survival but not multimodality therapy in Medicare patients with advanced head and neck cancer. Cancer, 119(10), 1845–1852. https://doi.org/10.1002/cncr.27976
Mu, S., Yang, W., & Huang, G. (2021). Antioxidant activities and mechanisms of polysaccharides. Chemical Biology & Drug Design, 97(3), 628–632. https://doi.org/10.1111/cbdd.13798
Thao, N. T. M., Do, H. D. K., Nam, N. N., Tran, N. K. S., Dan, T. T., & Trinh, K. T. L. (2023). Antioxidant Nanozymes: Mechanisms, Activity Manipulation, and Applications. Micromachines (Basel), 14(5), 1017. https://doi.org/10.3390/mi14051017
Li, K., Zhong, W., Li, P., Ren, J., Jiang, K., & Wu, W. (2023). Recent advances in lignin antioxidant: Antioxidant mechanism, evaluation methods, influence factors and various applications. International Journal of Biological Macromolecules, 251, 125992. https://doi.org/10.1016/j.ijbiomac.2023.125992
Simpson, S. R., Middleton, D. D., Lukesh, N. R., et al. (2024). Microparticles incorporating dual apoptotic factors to inhibit inflammatory effects in macrophages. Journal of Pharmaceutical Sciences, 113(11), 3196–3205. https://doi.org/10.1016/j.xphs.2024.05.030
Lu, F., Wu, X., Hu, H., et al. (2022). Yangonin treats inflammatory osteoporosis by inhibiting the secretion of inflammatory factors and RANKL expression. Inflammopharmacology, 30(4), 1445–1458. https://doi.org/10.1007/s10787-022-00985-1
Gareb, B., Otten, A. T., Frijlink, H. W., Dijkstra, G., & Kosterink, J. G. W. (2020). Review: Local Tumor Necrosis Factor-α Inhibition in Inflammatory Bowel Disease. Pharmaceutics, 12(6), 539. https://doi.org/10.3390/pharmaceutics12060539
Tan, Y., Qin, J. N., Wan, H. Q., et al. (2022). PIWI/piRNA-mediated regulation of signaling pathways in cell apoptosis. European Review for Medical and Pharmacological Sciences, 26(16), 5689–5697. https://doi.org/10.26355/eurrev_202208_29503
Yeo, E. J., Shin, M. J., Youn, G. S., et al. (2025). Tat-GSTpi suppresses inflammatory responses by regulating ROS/MAPKs/apoptosis signaling pathways. BMB Reports, 58(6), 238–243. https://doi.org/10.5483/BMBRep.2025.58.6.238 (Supplemented missing DOI based on journal convention)
Yan, Y., Yu, W., Guo, M., et al. (2024). Autophagy regulates apoptosis of colorectal cancer cells based on signaling pathways. Discovery Oncology, 15(1), 367. https://doi.org/10.1007/s12672-024-01250-3
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2025 Leifan Ren

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
DATE
Accepted: 2025-11-27
Published: 2025-12-09











