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Abstract: Amidst the deepening implementation of the Made in China 2025 strategy and the next-generation artificial 
intelligence revolution, this research addresses critical imperatives for digital transformation in mechanical engineering 
education. Centered on an AI-driven curricular reconstruction framework, we establish a tripartite reform paradigm 
integrating knowledge deconstruction, scenario reconstruction, and capability regeneration. Systematic innovations—
including intelligent content iteration, cyber-physical teaching spaces, and data-driven assessment transformation—cultivate 
emerging engineering leaders equipped with systemic cognition of intelligent equipment, profi ciency in industrial algorithm 
development, and cross-disciplinary innovation competencies. The approach constructs deeply coupled ecosystems bridging 
curricula, industrial demands, and research frontiers, delivering replicable, scalable, and certifi able AI-empowered solutions 
for core smart manufacturing programs within mechanical engineering disciplines.
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1.Introduction
1.1 Upgraded Demands for Smart Manufacturing Talent Development
Global engineering education is rapidly evolving toward intelligentization, transboundary integration, and ecosystem 
development. MIT’s “New Engineering Education Transformation” initiative embeds machine learning and digital twin 
technologies into mechanical engineering curricula, with its “Smart Manufacturing Digital Twin Teaching Platform” utilized 
for Boeing aircraft assembly line simulations   [1]. Germany’s “Industry 4.0 Education Plan” integrates industrial IoT and 
smart factory operations into vocational training via Dual System 2.0, enabling real-time student manipulation of Siemens’ 
Amberg plant production lines. The EU’s   “EIT Manufacturing” project unites 23 countries to develop interdisciplinary “AI + 
Mechanical Engineering” curricula emphasizing problem-oriented and data-driven pedagogy. These practices signify a global 
shift from competency-based training toward intelligence-empowered literacy, prioritizing core capabilities in applying AI 
toolchains within complex industrial scenarios [2].

1.2 Profound Impacts of AI Revolution on Mechanical Engineering Education
Technological paradigm shifts are fundamentally restructuring the ontological foundations of engineering education, 
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catalyzing triple transformations in mechanical engineering knowledge production models: (i) integration of intelligent 
algorithm clusters (e.g., DNNs, reinforcement learning) with traditional mechanical system modeling, enabling autonomous 
decision-making in equipment design; (ii) real-time dataflow reconstruction of equipment lifecycle management through 
industrial IoT architectures, advancing predictive maintenance beyond empirical limitations; (iii) synergistic evolution of 
multimodal sensing and digital twins, achieving dynamic isomorphism between physical entities and information models 
in cyber-physical spaces. This technological matrix demands mastery of composite competencies—topology optimization 
algorithm development, edge computing deployment, and human-machine collaborative decision-making—effectively 
deconstructing traditional cognitive boundaries in mechanical design. Accelerating the transformation of conventional 
mechanical programs into emerging engineering disciplines is therefore critical to address paradigm shifts in product 
intelligentization (new capabilities), AI convergence (new technologies), and multidisciplinary integration (new features).

1.3 Emerging Engineering Education Framework and Core Demands for Smart Manufacturing 
Talent
China’s Emerging Engineering Education initiative, guided by MOE’s “Six Excellences & One Peak” Plan 2.0, has 
spurred innovations including Zhejiang University’s “Intelligent Equipment & Robotics” micro-program featuring a tri-
level curriculum (mechanical design–deep learning–industrial cloud platforms) and Huazhong University of Science & 
Technology’s collaboration with Huawei on “Intelligent Base Industry-Education Integration Centers” embedding Ascend 
AI chip development [3]. Nevertheless, three critical bottlenecks persist: (i) insufficient AI integration—only 12% of 
mechanical programs mandate industrial big data analytics courses; (ii) fragmented pedagogical scenarios—disconnected 
virtual simulations and real production data impede holistic competency development; (iii) superficial industry-academia 
collaboration—limited corporate participation beyond equipment donation hinders deep co-development of technologies and 
curricula. Comparative analyses reveal that Chinese mechanical graduates exhibit <30% proficiency in intelligent system 
integration versus international peers. Industry feedback highlights acute misalignments between traditional training and 
emerging job requirements (e.g., smart line optimization, predictive maintenance), with graduates demonstrating deficiencies 
in algorithm development, cross-disciplinary thinking, and engineering ethics. Alarmingly, merely 15% of industrial 
technicians independently optimize ROS-based robotic path planning algorithms, underscoring severe education-industry 
gaps [4].

1.4 Research Objectives, Framework, and Contributions​​
To address these challenges, we propose an AI-enabled four-dimensional restructuring framework: (i) A dynamic knowledge 
graph-based curriculum system integrating SolidWorks, ROS, and PyTorch toolchains enables modular nesting of mechanical 
principles and AI algorithms; (ii) An HPC-powered “cloud-edge-device” experimental system grants remote access to 
enterprise digital twins with real-time production data; (iii) A multimodal learning analytics platform synthesizing code, 
operation, and defense data, employing LSTM networks to generate capability growth warning maps; (iv) Co-established 
“Smart Manufacturing Innovation Workshops” requiring graduation projects on intelligent production line optimization, 
yielding 37 commercially implemented student innovations within two years.

2.Bottleneck in new engineering disciplines for intelligent manufacturing
2.1 The Chasm Between Traditional Curricula and Frontier AI Technologies​​
Existing engineering education systems face systemic challenges from emerging intelligent technologies, fundamentally 
rooted in conflicts between traditional disciplinary paradigms and contemporary innovation frameworks. Rigid disciplinary 
barriers isolate course content, rendering knowledge architectures inadequate for addressing cross-domain problem-solving 
demands in fields like smart manufacturing. Analysis of intelligent data technology spectrums reveals scopes exceeding 
single-discipline capacities—heterogeneous data acquisition, high-dimensional preprocessing, distributed architectures, 
multi-database systems, hybrid batch-stream processing engines, and multimodal decision-making deeply integrate computer 
science, mechatronics, biomechanics, and cognitive science. This knowledge-structure imbalance severely constrains 
cognition and praxis within new engineering paradigms.
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Amid global manufacturing intelligence transformation and national strategic imperatives, higher engineering education 
must cultivate core smart manufacturing talent. This demands establishing a practice-oriented paradigm centered on macro-
engineering perspectives, achieved through deep decoupling and reconstruction of knowledge modules to fuse scientific 
principles, engineering technologies, humanistic intelligence, and social ethics. Crucially, developing students’ dynamic 
adaptability, innovation origination, and systemic integration capabilities in complex production scenarios requires 
pedagogical systems that track technological evolution. Forward-looking curricula must reshape engineering philosophies 
and craftsmanship literacy while integrating professionalism and ethical cultivation within advanced training. Such integrated 
education systems will drive talent supply for smart manufacturing, supporting national innovation strategies.

2.2 Preliminary Explorations in Emerging Engineering Talent Cultivation​​
The institutionalization of smart manufacturing programs is deconstructing traditional engineering education through 
its leadership-driven, interdisciplinary, innovative, cross-boundary, and dynamic attributes, compelling comprehensive 
reconstruction of educational philosophies, training models, goal positioning, curricular ecosystems, practice environments, 
and pedagogies [5]. Practice-based learning—as the topological nexus for capability development—encompasses course 
experiments, project-based designs, multi-level training cycles (cognition-production-graduation), and innovation platforms, 
collectively forming cognitively progressive frameworks. However, persistent deficiencies remain:
Educational philosophies exhibit tripartite disproportion: overemphasis on disciplinary foundations and theoretical 
transmission, undervaluation of competency mapping and contextual practice, and preferential quantitative evaluation 
over ethical cultivation, impeding macro-engineering thinking for complex problem-solving. Talent cultivation systems 
lack coherent innovation pathways and elite-incubation mechanisms. Meanwhile, critical shortages exist in dual-qualified 
instructors, training facilities, and cutting-edge equipment, compounded by insufficient knowledge transfer from research 
universities to undergraduate innovation education. Curricular responses to Industry 4.0 technologies (smart materials, 
additive manufacturing, digital twins) remain delayed [6], with scarce research projects and deficient student understanding of 
human-AI collaboration. Teaching modes remain confined to traditional unit process training, lacking embodied experience in 
complex engineering systems to foster systemic design and collaborative innovation. Evaluation mechanisms retain outcome-
focused approaches, failing to drive compound competency development.
As irreplaceable anchors for embodied cognition, engineering practice and innovation education must reconstruct 
modularized experimental systems by: developing projects integrating digital twins, IIoT, and intelligent controls to cultivate 
smart-plus equipment integration capabilities; deploying cyber-physical platforms creating industry-relevant challenges to 
strengthen complex problem-solving skills; and deepening topologically structured university-industry ecosystems to forge 
engineers possessing both technical innovation and industrial adaptation competencies.

3.Reconstruction Strategies for AI-Empowered Smart Manufacturing Talent Cultivation 
Systems​​
​​3.1 Multidimensional Pedagogical Innovations for Emerging Engineering Programs​​
The smart manufacturing practice ecosystem confronts structural predicaments: insufficient digitalization in teaching 
environments, severe generational mismatches between curricula and industrial technologies, fragmented training modules, 
and systemic disconnects between innovation education and disciplinary training [7]. These collectively undermine students’ 
engineering thinking and systemic innovation capabilities in complex industrial scenarios. Breakthrough requires constructing 
a quad-dimensional intelligent education paradigm—guided by global engineering foresight—that leverages intelligent 
technology infrastructures, multidisciplinary knowledge graphs, and information fusion platforms to establish progressively 
advanced capability incubation systems. This framework dissolves barriers between engineering cognition, foundational 
training, comprehensive practice, and innovation research through cyber-physical integration, enabling progressive 
development from technical application to systemic integration and original innovation capabilities.
Cross-disciplinary engineering contextualization proves pivotal for reshaping educational value chains. Technology 
convergence driven by AI fundamentally restructures approaches to solving significant engineering challenges—from 



4

Vol. 2 No. 3 (2025)Journal of Educational Theory and Practice

particle physics detection to intelligent diagnostics—demanding transdisciplinary knowledge integration and problem-
oriented engineering philosophies [8]. This necessitates a matrixed curriculum architecture balancing “core technical depth 
× application scenario breadth”: deep exploration of machine learning architectures and heterogeneous computing systems 
alongside cultivating abilities to solve complex engineering problems in advanced manufacturing and biomedicine using 
multimodal analytics. Crucially, comprehensive training across industrial intelligent system lifecycles (concept validation–
technical implementation–engineering deployment) must develop architectural thinking for transforming algorithmic 
advantages into engineering efficacy.
AI-driven educational hubs instigate profound supply-side transformations by dynamically generating multimodal learning 
pathways. These systems deconstruct learning states in real-time via knowledge graphs, optimize pedagogical strategies using 
reinforcement learning, and create personalized interfaces through natural language processing. Consequently, learning spaces 
expand beyond physical classrooms to immersive cyber-physical environments, while instructors evolve from knowledge 
transmitters to cognitive framework designers. Educators’ core functions now center on designing cross-disciplinary 
challenge projects, establishing critical discourse mechanisms, and fostering technological ethics, thereby forming symbiotic 
ecosystems of “AI-guided precision mentoring + educator-led high-order inspiration”.
Lifelong learning capacity reconstruction must transcend spatiotemporal boundaries of traditional engineering education. 
Rapid knowledge obsolescence in smart manufacturing compels dynamic iteration mechanisms: strengthening STEM core 
literacy (mathematical modeling, computational thinking, engineering principles) at foundational levels while establishing 
responsive “technology tracking–knowledge reconstruction–capability transfer” cycles at developmental stages. Educational 
institutions should collaborate with industries to create professional competency digital twins, developing modularized 
courses for career phases (e.g., IIoT architect certifications, smart maintenance specialist programs) with blockchain-enabled 
lifelong credential tracking. Urgent priorities include establishing intelligent learning clouds spanning “academic education–
professional development–self-directed advancement” lifecycles to resolve structural contradictions between industrial 
evolution and human capital upgrading.
Focusing on deep AI-emerging engineering integration in mechanical curricula, this research advances a trinity reform 
framework (“cognitive leap–scenario reconstruction–evaluation revolution”) grounded in educational ecology theory and 
OBE-CDIO integration. Systematic paradigm upgrading occurs through knowledge deconstruction, cyber-physical spatial 
synergy, and data-driven intelligence to create three-dimensional curricular ecosystems merging mechanical frontiers, AI 
algorithms, and industrial data. This approach dismantles disciplinary barriers, scenario limitations, and unidimensional 
evaluation, establishing spiral cultivation loops of “theoretical cognition iteration–practical capability progression–innovation 
capacity regeneration”, thereby providing comprehensive solutions for cultivating interdisciplinary leaders with intelligent 
system design, industrial algorithm development, and cross-domain collaborative innovation competencies.
Implementation requires elite universities possessing interdisciplinary faculty resources and advanced infrastructure. Strategic 
priorities include recruiting AI and IIoT-specialized faculty, constructing new engineering-compatible training platforms 
and innovation bases, and developing next-generation curricula to cultivate talents possessing frontier transdisciplinary 
knowledge aligned with emerging industrial demands. The following is an introduction to the research plan.

3.2 Innovations in Cyber-Physical Data-Driven Pedagogical Models​​
​​3.2.1 AI-Empowered Curricular Reconstruction and Cognitive Transformation​​
Guided by educational ecology theory, courses including Mechanical Engineering Frontiers, Construction Machinery 
Structures, and Mechatronic System Analysis & Design undergo tri-dimensional knowledge deconstruction integrating 
mechanical frontiers, AI algorithms, and industrial data. Modularized AI-infused units establish knowledge graphs spanning 
complete technical chains from structural design (SolidWorks) and algorithm development (PyTorch) to system integration 
(ROS). Cognitive constructivism principles inform the design of spiral pedagogical pathways: “cognitive conflict (traditional 
mechanical design pain points) - conceptual reconstruction (AI intervention) - meaning generation (intelligent system 
optimization)”. These pathways employ comparative case libraries (e.g., traditional gear design vs. intelligent lifespan 
prediction) to facilitate students’ transition from experiential to algorithm-enhanced engineers. Industry partnerships 
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transform industrial-grade AI applications—such as hydraulic pump boom stress prediction models and welding robot 
mechatronic systems—into configurable teaching packages containing datasets, code libraries, and virtual debugging 
environments, creating smart conversion channels connecting industrial challenges with teaching cases and research topics.

​​3.2.2 Immersive Cyber-Physical Learning Scenarios​​
Hybrid physical-virtual-cloud experimental spaces integrate industrial robot workstations (KUKA KR AGILUS), intelligent 
sensor networks (NI CompactDAQ), and cloud-based digital twin platforms (ANSYS Twin Builder). This infrastructure 
enables comprehensive experimentation encompassing physical device manipulation, virtual parameter optimization, and 
AI algorithm validation. Leveraging 5G-MEC edge computing facilitates real-time remote access to smart production lines, 
establishing “classroom-as-workshop” environments where operational data becomes teaching material. Smart equipment 
maker marathons challenge students with autonomous AGV development, intelligent sorting system optimization, and 
predictive maintenance algorithm design. Discipline competitions (e.g., China National Mechanical Innovation Design 
Competition) are deeply integrated into curricula and form closed-loop innovation cultivation through “competition-as-
practice”.

​​3.2.3 Data-Driven Precision Assessment Systems​​
A tripartite data acquisition framework combines classroom behavior capture (MegEye), operational logging (LabVIEW), and 
code quality analysis (GitHub Copilot). Multidimensional evaluation matrices assess knowledge mastery, skill proficiency, 
and innovation maturity. BERT NLP models parse lab reports, ResNet CNNs evaluate design drawings, and LSTM networks 
track learning trajectories to generate 3D capability radar charts quantifying mechanical design, algorithm application, and 
system integration competencies. AI-powered diagnostic systems deploy reinforcement learning to recommend personalized 
learning paths (e.g., PyTorch micro-courses for algorithmically challenged students), forming smart improvement cycles: “data 
collection- problem diagnosis- resource provision- outcome verification”.

4.Implementation Pathways and Case Studies for Industry-Education Integration​​
4.1 Practice Cases in Emerging Engineering Smart Manufacturing Programs​​
4.1.1 Designing Industry-Education Fusion Mechanisms​​
Smart manufacturing pedagogical innovation necessitates coupling paradigms where industrial knowledge topologically 
feedbacks into classroom cognition. This involves deconstructing traditional unidirectional instruction models to establish 
a three-phase evolutionary framework: “industrial problem anchoring-knowledge graph restructuring-ntelligent guided 
deconstruction”. Implementation pathways include leveraging genuine technical pain points (e.g., digital twin latency 
bottlenecks, multi-robot path planning conflicts) as cognitive triggers to scaffold bidirectional mapping between industrial 
challenges and technical principles. Instructors function as knowledge architects, constructing multi-tiered deconstruction-
reconstruction chains using cognitive scaffolding theory—embedding core principle explanations during industry-induced 
cognitive conflicts, then guiding students to crystallize innovative solutions through collective intelligence crystallization. 
Crucially, emerging technologies like edge computing optimization and industrial visual recognition are deeply integrated, 
forming closed-loop cognitive evolution from technical pain points through theoretical penetration to solution iteration.
Innovative multidimensional feedback systems critically enable mechanism implementation. Quadripartite assessment 
frameworks comprise: (1) knowledge absorption evaluated through modular conceptual modeling tasks requiring multiscale 
abstraction of IIoT architectures; (2) technical integration validated via open challenges (e.g., designing cyber-physical 
plant scheduling systems assessing multimodal data fusion); (3) innovation mindset appraised via technological foresight 
analyses (e.g., predicting cloud-edge-device continuum trends); (4) engineering ethics examined through technical decision 
sandbox simulations. These constructs form capacity matrices spanning “conceptual construction-system realization-frontier 
exploration-ethical deliberation”, uniquely transcending standardized answers to cultivate systemic comprehension of 
industrial intelligence complexity.
Reform validation requires dynamic competency mapping models synthesizing formative and summative evaluations. 
Granular-level behavioral data constructs personal knowledge heatmaps via NLP analysis of conceptual linkage strength in 
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discussions; meso-level digital competency twins track cognitive trajectory evolution from design to prototyping; macro-
level structured clinical examinations interrogate systems thinking depth during complex scenarios like industrial digital twin 
diagnostics. This cross-paradigm assessment integrates cognitive neuroscience, industrial intelligence, and psychometrics, 
fundamentally elevating evaluation dimensions from knowledge replication to innovation literacy.

4.1.2 Core Course Transformation through AI Empowerment​​
Smart manufacturing curricular reconstruction requires dynamic industrial technology response mechanisms. The 
Mechatronic Intelligent Systems course employs engineering machinery hydraulic seal failure prediction as its pedagogical 
vehicle, guiding students to develop spatiotemporal feature-decoupling models using >300,000 operational IoT data 
samples. This involves creating leakage prediction architectures integrating LSTM memory units with causal CNNs while 
simultaneously quantifying environmental impact across equipment lifecycles. The Sustainable Design of Intelligent 
Equipment course pioneers multi-objective optimization frameworks: deploying AGV transport simulations in digital twin 
environments, students design metaheuristic scheduling algorithms concurrently optimizing throughput (≥35 units/h), carbon 
intensity (≤0.1kgCO₂/unit), and workstation load dispersion (≤15%). This paradigm has yielded 17 industrial solutions, 
including a logistics system using enhanced genetic algorithms that reduced warehouse energy consumption by 22.3%.
Industry-academia knowledge exchange achieves educational value amplification via dual mentorship: industry experts lead 
40% of ROS Industrial Robotics Control modules, transforming 12 cases (e.g., reducer vibration spectrum analysis) into 
contextualized units. The precision manufacturing philosophy training system integrates quantum sensing and multiphysics 
simulations to meet welding deformation tolerances (≤0.01mm). Over three years, this reform generated 39 technological 
feedback instances, including a deep learning weld defect detection system boosting production line yield to 98.7%, winning 
the China Graduate Robot Innovation Design Championship.
Constructing dynamic assessment networks addresses pedagogical stagnation. For technologically outdated content like tool 
design, technology evolution mapping methodology is developed: using diamond-coated tool plasma deposition as cognitive 
anchors, knowledge transfer chains connect material genomics, interface bonding mechanisms, and intelligent monitoring. 
Three-dimensional evaluation reforms include: micro-level assembly process quantification via motion-capture heatmaps; 
meso-level smart line failure root-cause analysis assessing multisource data fusion; macro-level digital portfolios tracking 
cognitive transition trajectories from TRIZ-based conceptualization to digital twin verification. Supporting teacher evaluation 
digital twins monitor 12 dimensions—from industrial knowledge coverage to emerging technology responsiveness—forming 
closed-loop quality improvement through “monitoring-diagnosis-enhancement”.

​​4.2 Implementation Efficacy, Guarantee Mechanisms, and Scalable Value​​
To address smart manufacturing talent cultivation challenges, we established a dual-track “technological-value” co-
education mechanism, creating replicable reform paradigms. The industrial spirit substantiation approach effectively resolves 
disconnected ethical indoctrination. Specific implementations include: high-speed train gearbox AR courses (annually serving 
3,000 students) triggering holographic displays of technological breakthroughs upon component scanning, transforming 
historical innovations into immersive experiences; and ethics decision sandboxes (≤0.08s latency) deployed via the National 
Supercomputing Center, generating “quality responsibility reports” during hydraulic system debugging to bridge ethical 
principles and practice. Empirical evidence confirms efficacy: density of responsibility/innovation terminology in lab reports 
increased from 3.2 to 5.3 instances per thousand words with 100% safety lock compliance.
High-caliber faculty remain pivotal for elite innovation cultivation. We formed a distinguished mentor cohort comprising 
30+ professors implementing student-teacher intensive interaction through academic advisory roles, core/advanced course 
instruction, and undergraduate research supervision. This enables direct student exposure to academic excellence and research 
frontiers, fostering mutual understanding while integrating promising students into research teams early, creating a two-way 
empowerment ecosystem between exceptional mentors and protégés.
Within emerging engineering contexts, we constructed a distinctive practice framework centered on quality smart 
manufacturing experiential learning. This system integrates engineering intuition, competency development, and quality 
education, implementing continuous research-based learning throughout four-year curricula. Key initiatives include: engaging 
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students with challenging engineering problems through participation in cutting-edge research and corporate innovation; 
establishing national smart manufacturing platform access mechanisms for undergraduates; and embedding students into 
major research/engineering projects. This transforms disciplinary advantages into educational strengths, achieving progressive 
dimensionality expansion from isolated tasks to systemic engineering perspectives while catalyzing transformative impacts.
Digital intelligence technologies enable authentic personalized learning. Deeply integrating AI with educational principles 
creates high-efficiency learning ecosystems: platforms generate precise learning profiles through behavioral analytics, 
identifying preferences and difficulties to underpin personalized recommendations; machine learning optimizes resource 
taxonomies and retrieval efficiency within knowledge bases; and state-resource alignment achieves exact matches between 
learner states and adaptive materials.

Conclusion
The emerging engineering paradigm demands enhanced practical pedagogy for cultivating smart manufacturing innovators. 
Guided by the “practice-driven innovation” philosophy, this research integrates engineering praxis into curricular 
transformation, establishing a multidisciplinary competency-oriented framework emphasizing scientific acumen and 
engineering literacy. To ensure the continuous development of professional intuition, core competencies, and quality 
education throughout four-year programs, we constructed industry-academia-research integrated innovation platforms 
to persistently stimulate creative thinking. Simultaneously, redefining practical education connotation and methodology 
while innovating evaluation systems comprehensively ensures knowledge-capability-literacy development, elevating 
smart manufacturing pedagogical quality. Ultimately, this transformation fosters self-directed learning, proactive practice, 
and innovation pursuit, achieving the integrated cultivation goals of value guidance, knowledge exploration, capability 
advancement, and literacy enhancement.
Synthesizing international “digitalization and contextualization” best practices while overcoming domestic “disciplinary 
fragmentation and industry-education disconnection,” our “classrooms-connected-to-workshops” educational model 
achieves deep convergence of education, industry, and innovation chains. This approach provides an empirical paradigm 
for distinctive emerging engineering development, accelerating China’s strategic transition from manufacturing power to 
intelligent manufacturing leadership. Future efforts will refine curricula and faculty development for intelligent manufacturing 
engineering and smart vehicle engineering programs, steadfastly pursuing multidisciplinary fusion across computing, 
automation, and mechanical engineering to cultivate interdisciplinary innovators capable of designing, producing, operating, 
and researching intelligent products and equipment at advanced levels.
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