Intelligent Computation and Analysis of Mechanical Behaviour in Piezoelectric Metamaterials Based on Physics-Informed Neural Networks
DOI:
https://doi.org/10.62177/jaet.v3i1.979Keywords:
Piezoelectric Metamaterials, Physical Information Neural Network, Multi-Scale Modeling, Multiphysics Coupling, Topology OptimizationAbstract
Piezoelectric metamaterials, serving as critical functional media in high-end equipment, face significant design challenges due to the mesh bottlenecks of traditional finite element methods and the interpretability shortcomings of purely data-driven models. Physical Information Neural Networks (PINNs) establish a robust scientific machine learning paradigm by embedding physical equations, offering an innovative solution to these predicaments. This paper systematically reviews recent advancements of PINNs in piezoelectric metamaterial analysis and design: drawing upon multiscale modelling theory, it elucidates PINNs' mesh-free advantages in handling high-dimensional parameters and their exceptional capability in solving small-sample inverse problems; subsequently, it explores their application paradigms in constructing high-fidelity forward surrogate models and accelerating efficient topology optimisation. Finally, this paper summarises key computational challenges in multi-physics coupling scenarios and outlines potential pathways towards achieving high-fidelity intelligent design, aiming to bridge the existing gap between theoretical modelling and engineering practice in piezoelectric metamaterials.
Downloads
References
Bischof, R., & Kraus, M. A. (2025). Multi-objective loss balancing for physics-informed deep learning. Computer Methods in Applied Mechanics and Engineering, 439, 117914. https://doi.org/10.1016/j.cma.2025.117914
Burbano, A., Zorin, D., & Jarosz, W. (Eds.). (2024). Data-efficient discovery of hyperelastic TPMS metamaterials with extreme energy dissipation. In Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers 24. ACM.
Chen, K., Dong, X., Gao, P., Chen, Q., Peng, Z., & Meng, G. (2025). Physics-informed neural networks for topological metamaterial design and mechanical applications. International Journal of Mechanical Sciences, 301, 110489. https://doi.org/10.1016/j.ijmecsci.2025.110489
Chen, S., Tong, X., Huo, Y., Liu, S., Yin, Y., Tan, M., Cai, K., & Ji, W. (2024). Piezoelectric biomaterials inspired by nature for applications in biomedicine and nanotechnology. Advanced Materials, 36, 2406192. https://doi.org/10.1002/adma.202406192
Chen, Y., Lu, L., Karniadakis, G. E., & Dal Negro, L. (2020). Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Optics Express, 28, 11618. https://doi.org/10.1364/OE.384875
Danawe, H., & Tol, S. (2023). Electro-momentum coupling tailored in piezoelectric metamaterials with resonant shunts. APL Materials, 11, 091118. https://doi.org/10.1063/5.0165267
Didilis, K., Selicani, G. V., Tinti, V. B., Mobin, M., Brouczek, D., Staal, L., Marani, D., Insinga, A. R., Haugen, A. B., & Esposito, V. (2026). Topology-driven electromechanical actuation in 3D-printed TPMS piezoelectric ceramics. Acta Materialia, 303, 121724. https://doi.org/10.1016/j.actamat.2025.121724
Fan, G., Guo, N., Ahmed, M., & Ghazouani, N. (2025). Physics-informed neural network-enhanced simulation to estimate piezoelectric energy harvesting in cantilevered metamaterial concrete systems under wind excitation. Mechanics of Advanced Materials and Structures, 1–17. https://doi.org/10.1080/15376494.2025.2476205
Fang, D., & Tan, J. (2022). Immersed boundary-physics informed machine learning approach for fluid–solid coupling. Ocean Engineering, 263, 112360. https://doi.org/10.1016/j.oceaneng.2022.112360
Fang, Z., & Zhan, J. (2020). Deep physical informed neural networks for metamaterial design. IEEE Access, 8, 24506–24513. https://doi.org/10.1109/ACCESS.2019.2963375
Faraci, D., Comi, C., & Marigo, J.-J. (2022). Band gaps in metamaterial plates: Asymptotic homogenization and bloch-floquet approaches. Journal of Elasticity, 148, 55–79. https://doi.org/10.1007/s10659-022-09879-3
Gao, M., He, Z., Liu, J., Lü, C., & Wang, G. (2025). A dynamic homogenization method for elastic wave band gap and initial-boundary value problem analysis of piezoelectric composites with elastic and viscoelastic periodic layers. Journal of the Mechanics and Physics of Solids, 197, 106048. https://doi.org/10.1016/j.jmps.2025.106048
Gao, Z., Lei, Y., Li, Z., Yang, J., Yu, B., Yuan, X., Hou, Z., Hong, J., & Dong, S. (2025). Artificial piezoelectric metamaterials. Progress in Materials Science, 151, 101434. https://doi.org/10.1016/j.pmatsci.2025.101434
Guo, J., Zhu, H., Yang, Y., & Guo, C. (2025). Advances in physics-informed neural networks for solving complex partial differential equations and their engineering applications: A systematic review. Engineering Applications of Artificial Intelligence, 161, 112044. https://doi.org/10.1016/j.engappai.2025.112044
Haghighat, E., Raissi, M., Moure, A., Gomez, H., & Juanes, R. (2021). A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Computer Methods in Applied Mechanics and Engineering, 379, 113741. https://doi.org/10.1016/j.cma.2021.113741
Harandi, A., Moeineddin, A., Kaliske, M., Reese, S., & Rezaei, S. (2024). Mixed formulation of physics-informed neural networks for thermo-mechanically coupled systems and heterogeneous domains. Numerical Methods in Engineering, 125, e7388. https://doi.org/10.1002/nme.7388
He, Z., Liu, J., & Chen, Q. (2023). Higher-order asymptotic homogenization for piezoelectric composites. International Journal of Solids and Structures, 264, 112092. https://doi.org/10.1016/j.ijsolstr.2022.112092
Institute of Electrical and Electronics Engineers. (1988). IEEE standard on piezoelectricity. https://doi.org/10.1109/IEEESTD.1988.79638
Jagtap, A. D., Kharazmi, E., & Karniadakis, G. E. (2020). Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems. Computer Methods in Applied Mechanics and Engineering, 365, 113028. https://doi.org/10.1016/j.cma.2020.113028
Jeong, H., Batuwatta-Gamage, C., Bai, J., Xie, Y. M., Rathnayaka, C., Zhou, Y., & Gu, Y. (2023). A complete physics-informed neural network-based framework for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 417, 116401. https://doi.org/10.1016/j.cma.2023.116401
Ji, W., Chang, J., Xu, H.-X., Gao, J. R., Gröblacher, S., Urbach, H. P., & Adam, A. J. L. (2023). Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods. Light Science & Applications, 12, 169. https://doi.org/10.1038/s41377-023-01218-y
Jiang, J., Wu, J., Chen, Q., Chatzigeorgiou, G., & Meraghni, F. (2023). Physically informed deep homogenization neural network for unidirectional multiphase/multi-inclusion thermoconductive composites. Computer Methods in Applied Mechanics and Engineering, 409, 115972. https://doi.org/10.1016/j.cma.2023.115972
Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning. Nature Reviews Physics, 3, 422–440. https://doi.org/10.1038/s42254-021-00314-5
Kiran, R., Nguyen-Thanh, N., Yu, H., & Zhou, K. (2023). Adaptive isogeometric analysis–based phase-field modeling of interfacial fracture in piezoelectric composites. Engineering Fracture Mechanics, 288, 109181. https://doi.org/10.1016/j.engfracmech.2023.109181
Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2021). Fourier neural operator for parametric partial differential equations. https://doi.org/10.48550/arXiv.2010.08895
Li, Z., Yi, X., Yang, J., Bian, L., Yu, Z., & Dong, S. (2022). Designing artificial vibration modes of piezoelectric devices using programmable, 3D ordered structure with piezoceramic strain units. Advanced Materials, 34, 2107236. https://doi.org/10.1002/adma.202107236
Liu, C., He, Z., Lü, C., & Wang, G. (2024). Concurrent topology optimization of multiscale piezoelectric actuators. International Journal of Solids and Structures, 290, 112664. https://doi.org/10.1016/j.ijsolstr.2024.112664
Liu, Y., He, H., Cao, Y., Liang, Y., & Huang, J. (2024). Inverse design of TPMS piezoelectric metamaterial based on deep learning. Mechanics of Materials, 198, 105109. https://doi.org/10.1016/j.mechmat.2024.105109
Lu, L., Jin, P., Pang, G., Zhang, Z., & Karniadakis, G. E. (2021). Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature Machine Intelligence, 3, 218–229. https://doi.org/10.1038/s42256-021-00302-5
McClenny, L. D., & Braga-Neto, U. M. (2023). Self-adaptive physics-informed neural networks. Journal of Computational Physics, 474, 111722. https://doi.org/10.1016/j.jcp.2022.111722
Meng, C., Thrane, P. C. V., Ding, F., Gjessing, J., Thomaschewski, M., Wu, C., Dirdal, C., & Bozhevolnyi, S. I. (2021). Dynamic piezoelectric MEMS-based optical metasurfaces. Science Advances, 7, eabg5639. https://doi.org/10.1126/sciadv.abg5639
Nassar, M. E., Saeed, N. A., & Nasedkin, A. (2023). Determination of effective properties of porous piezoelectric composite with partially randomly metalized pore boundaries using finite element method. Applied Mathematical Modelling, 124, 241–256. https://doi.org/10.1016/j.apm.2023.07.025
Nguyen, C., Zhuang, X., Chamoin, L., Zhao, X., Nguyen-Xuan, H., & Rabczuk, T. (2020). Three-dimensional topology optimization of auxetic metamaterial using isogeometric analysis and model order reduction. Computer Methods in Applied Mechanics and Engineering, 371, 113306. https://doi.org/10.1016/j.cma.2020.113306
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707. https://doi.org/10.1016/j.jcp.2018.10.045
Ravanbod, M., & Ebrahimi-Nejad, S. (2024). Perforated auxetic honeycomb booster with reentrant chirality: A new design for high-efficiency piezoelectric energy harvesting. Mechanics of Advanced Materials and Structures, 31, 9857–9872. https://doi.org/10.1080/15376494.2023.2280997
Ren, M., Wang, C., Moshrefi-Torbati, M., Yurchenko, D., Shu, Y., & Yang, K. (2025). Optimization of a comb-like beam piezoelectric energy harvester using the parallel separated multi-input neural network surrogate model. Mechanical Systems and Signal Processing, 224, 111939. https://doi.org/10.1016/j.ymssp.2024.111939
Ren, X., Das, R., Tran, P., Ngo, T. D., & Xie, Y. M. (2018). Auxetic metamaterials and structures: A review. Smart Materials and Structures, 27, 023001. https://doi.org/10.1088/1361-665X/aaa61c
Rezaei, S., Harandi, A., Moeineddin, A., Xu, B.-X., & Reese, S. (2022). A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: Comparison with finite element method. Computer Methods in Applied Mechanics and Engineering, 401, 115616. https://doi.org/10.1016/j.cma.2022.115616
Roberts, A. (2024). Embed in ensemble to rigorously and accurately homogenize quasi-periodic multi-scale heterogeneous material. ANZIAM Journal, 66, 1–34. https://doi.org/10.1017/S1446181124000099
Serrao, P. H., & Kozinov, S. (2024). Robust mixed FE for analyses of higher-order electromechanical coupling in piezoelectric solids. Computational Mechanics, 73, 1203–1217. https://doi.org/10.1007/s00466-023-02407-7
Sharma, D., & Hiremath, S. S. (2022a). Additively manufactured mechanical metamaterials based on triply periodic minimal surfaces: Performance, challenges, and application. Mechanics of Advanced Materials and Structures, 29, 5077–5107. https://doi.org/10.1080/15376494.2021.1948151
Sharma, D., & Hiremath, S. S. (2022b). Additively manufactured mechanical metamaterials based on triply periodic minimal surfaces: Performance, challenges, and application. Mechanics of Advanced Materials and Structures, 29, 5077–5107. https://doi.org/10.1080/15376494.2021.1948151
Sharma, S., Ammu, S. K., Thakolkaran, P., Jovanova, J., Masania, K., & Kumar, S. (2025). Piezoelectric truss metamaterials: Data-driven design and additive manufacturing. npj Metamaterials, 1, 9. https://doi.org/10.1038/s44455-025-00009-2
Shi, J., & Akbarzadeh, A. H. (2019). Architected cellular piezoelectric metamaterials: Thermo-electro-mechanical properties. Acta Materialia, 163, 91–121. https://doi.org/10.1016/j.actamat.2018.10.001
Shi, J., Ju, K., Chen, H., Orsat, V., Sasmito, A. P., Ahmadi, A., & Akbarzadeh, A. (2025). Ultrahigh piezoelectricity in truss‐based ferroelectric ceramics metamaterials. Advanced Functional Materials, 35, 2417618. https://doi.org/10.1002/adfm.202417618
Shin, Y., Darbon, J., & Karniadakis, G. E. (2020). On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs. Communications in Computational Physics, 28, 2042–2074. https://doi.org/10.4208/cicp.OA-2020-0193
Sitzmann, V., Martel, J. N. P., Bergman, A. W., Lindell, D. B., & Wetzstein, G. (2020). Implicit neural representations with periodic activation functions. https://doi.org/10.48550/arXiv.2006.09661
Somnic, J., & Jo, B. W. (2022). Status and challenges in homogenization methods for lattice materials. Materials, 15, 605. https://doi.org/10.3390/ma15020605
Stankiewicz, G., Dev, C., Weichelt, M., Fey, T., & Steinmann, P. (2024). Towards advanced piezoelectric metamaterial design via combined topology and shape optimization. Structural and Multidisciplinary Optimization, 67, 26. https://doi.org/10.1007/s00158-024-03742-w
Sun, R., Jeong, H., Zhao, J., Gou, Y., Sauret, E., Li, Z., & Gu, Y. (2024). A physics-informed neural network framework for multi-physics coupling microfluidic problems. Computers & Fluids, 284, 106421. https://doi.org/10.1016/j.compfluid.2024.106421
Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J. T., & Ng, R. (2020). Fourier features let networks learn high frequency functions in low dimensional domains. https://doi.org/10.48550/arXiv.2006.10739
Tandis, N., & Tandis, E. (2025). A physics-informed machine learning approach to piezoelectric plate modelling. Engineering Applications of Artificial Intelligence, 160, 111847. https://doi.org/10.1016/j.engappai.2025.111847
Tassi, N., Bakkali, A., Fakri, N., Azrar, L., & Aljinaidi, A. (2021). Well conditioned mathematical modeling for homogenization of thermo-electro-mechanical behaviors of piezoelectric composites. Applied Mathematical Modelling, 99, 276–293. https://doi.org/10.1016/j.apm.2021.06.019
Tran, T. V., Nanthakumar, S. S., & Zhuang, X. (2025). Deep learning-based framework for the on-demand inverse design of metamaterials with arbitrary target band gap. npj Artificial Intelligence, 1, 2. https://doi.org/10.1038/s44387-025-00001-1
Wang, B., Meng, D., Lu, C., Zhang, Q., Zhao, M., & Zhang, J. (2025). Physics-informed neural networks for analyzing size effect and identifying parameters in piezoelectric semiconductor nanowires. Journal of Applied Physics, 137, 024303. https://doi.org/10.1063/5.0248278
Wang, D., Dong, L., & Gu, G. (2023). 3D printed fractal metamaterials with tunable mechanical properties and shape reconfiguration. Advanced Functional Materials, 33, 2208849. https://doi.org/10.1002/adfm.202208849
Wu, C., Zhu, M., Tan, Q., Kartha, Y., & Lu, L. (2023). A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering, 403, 115671. https://doi.org/10.1016/j.cma.2022.115671
Xiao, Z., Weng, Y., Yao, W., Chen, W., & Zhang, C. (2026). Nonlinear multi-field coupling analysis of piezoelectric semiconductors via PINNs. Science China Physics, Mechanics & Astronomy, 69, 214611. https://doi.org/10.1007/s11433-025-2742-6
Yang, J., Li, Z., Xin, X., Gao, X., Yuan, X., Wang, Z., Yu, Z., Wang, X., Zhou, J., & Dong, S. (2019). Designing electromechanical metamaterial with full nonzero piezoelectric coefficients. Science Advances, 5, eaax1782. https://doi.org/10.1126/sciadv.aax1782
Yang, Y., Meng, J., Fan, W., Lv, J., & Xu, B. (2025). Virtual element method for piezoelasticity. Numerical Methods in Engineering, 126, e70191. https://doi.org/10.1002/nme.70191
Yarotsky, D. (2017). Error bounds for approximations with deep ReLU networks. Neural Networks, 94, 103–114. https://doi.org/10.1016/j.neunet.2017.07.002
Yin, J., Wen, Z., Li, S., Zhang, Y., & Wang, H. (2024). Dynamically configured physics-informed neural network in topology optimization applications. Computer Methods in Applied Mechanics and Engineering, 426, 117004. https://doi.org/10.1016/j.cma.2024.117004
Zhang, Y., Huang, Y., Zhao, S., Jiao, Z., Lü, C., & Yang, J. (2025a). Nonlinear dynamic response and stability of piezoelectric shells with piezoelectric nonlinearities. International Journal of Mechanical Sciences, 304, 110731. https://doi.org/10.1016/j.ijmecsci.2025.110731
Zhang, Y., Zhu, H., Zhao, S., Ni, Z., Lü, C., & Yang, J. (2025b). Nonlinear dynamic response of functionally graded plates with piezoelectric nonlinearity. European Journal of Mechanics - A/Solids, 114, 105776. https://doi.org/10.1016/j.euromechsol.2025.105776
Zhang, Y., Guo, X., Wu, Y., Zhang, Y. Y., & Lü, C. (2025c). Active control of cables with piezoelectric actuation considering geometric and material nonlinearities. Engineering Structures, 340, 120773. https://doi.org/10.1016/j.engstruct.2025.120773
Zhang, Y., Guo, X., Wu, Y., Zhang, Y. Y., Zhang, H., & Lü, C. (2024a). Nonlinear thermo-electro-mechanical responses and active control of functionally graded piezoelectric plates subjected to strong electric fields. Thin-Walled Structures, 205, 112375. https://doi.org/10.1016/j.tws.2024.112375
Zhang, Y., Guo, X., Wu, Y., Zhang, Y. Y., Zhang, H., & Lü, C. (2024b). Vibration control of membrane structures by piezoelectric actuators considering piezoelectric nonlinearity under strong electric fields. Engineering Structures, 315, 118413. https://doi.org/10.1016/j.engstruct.2024.118413
Zhang, Z., Lee, J.-H., & Gu, G. X. (2022). Rational design of piezoelectric metamaterials with tailored electro-momentum coupling. Extreme Mechanics Letters, 55, 101785. https://doi.org/10.1016/j.eml.2022.101785
Zhao, W., Hao, R., Zhang, M., Chen, Q., Yang, Z., & Chen, X. (2025). Physically informed neural networks for homogenization and localization of composites with periodic microstructures. Composite Structures, 367, 119260. https://doi.org/10.1016/j.compstruct.2025.119260
Zhou, L., Geng, J., Chen, P., Zhu, H., Tian, H., & Liu, X. (2024). Mechanic-electric coupling cell-based smoothed isogeometric analysis for the static behaviors of piezoelectric structures. Acta Mechanica, 235, 2803–2821. https://doi.org/10.1007/s00707-024-03856-8
Zhou, Y., Wang, Z., Zhou, K., Tang, H., & Li, X. (2025). LT-PINN: Lagrangian topology-conscious physics-informed neural network for boundary-focused engineering optimization. https://doi.org/10.48550/arXiv.2506.06300
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2026 Danyang Qiu, Yaoxin Huang, Xinru Li, Ningping Zhan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
DATE
Accepted: 2026-01-15
Published: 2026-01-22










