Indoor Pathfinding with the A* Algorithm: A Cross-Platform Mobile Implementation Case
DOI:
https://doi.org/10.62177/jaet.v2i4.899Keywords:
Indoor Pathfinding, A* Algorithm, NestJS, Mobile ApplicationAbstract
This study presents the development of a fully integrated mobile module that enables indoor pathfinding functionality from the front end to the back end. The module is implemented using the A* algorithm for route optimization and a NestJS framework with PostgreSQL and PostGIS for spatial data management. Designed as part of the University of the Fraser Valley (UFV) Campus App project, this cross-platform mobile application is built with React Native to ensure seamless usability across devices. Core functionalities include intelligent room search, interactive floor plan visualization, and real-time, turn-by-turn navigation powered by WebSocket communication. The system demonstrates the feasibility of combining spatial databases, efficient routing algorithms, and real-time communication technologies to enhance campus navigation and user experience.
Downloads
References
Wu, M., Qiao, L., Wu, Z., Hou, Z., Chen, S., & Lv, G. (2024). What can cartographers learn from artistic paintings when stylizing maps? A preliminary synthesis from the perspective of visual neuroscience. Cartography and Geographic Information Science, 52(1), 35–54. https://doi.org/10.1080/15230406.2024.2370878
Zhang, J., Han, G., Sun, N., & Shu, L. (2017). Path-loss-based fingerprint localization approach for location-based services in indoor environments. IEEE Access, 5, 13756–13769. https://doi.org/10.1109/ACCESS.2017.2728789
Simões, W. C. S., Machado, G. S., Sales, A. M. A., de Lucena, M. M., Jazdi, N., & de Lucena, V. F., Jr. (2020). A review of technologies and techniques for indoor navigation systems for the visually impaired. Sensors (Basel), 20(14), 3935. https://doi.org/10.3390/s20143935
Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107. https://doi.org/10.1109/TSSC.1968.300136
Kamboj, N., & Zhang, K. (2025). Low-cost CCTV repurposing for sustainable parking management: A non-AI computer vision case study. Journal of Advances in Engineering and Technology, 2(4). https://doi.org/10.62177/jaet.v2i4.666
El-Sheimy, N., & Li, Y. (2021). Indoor navigation: State of the art and future trends. Satellite Navigation, 2(7). https://doi.org/10.1186/s43020-021-00041-3
Rahmani, V., & Pelechano, N. (2022). Towards a human-like approach to path finding. Computers & Graphics, 102, 164–174. https://doi.org/10.1016/j.cag.2021.08.020
Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271. https://doi.org/10.1007/BF01386390
Rachmawati, R., & Gustin, L. (2020). Analysis of Dijkstra’s algorithm and A* algorithm in shortest path problem. Journal of Physics: Conference Series, 1566(1), 012061. https://doi.org/10.1088/1742-6596/1566/1/012061
Stentz, A. (1994). Optimal and efficient path planning for partially-known environments. In Proceedings of the IEEE International Conference on Robotics and Automation (Vol. 4, pp. 3310–3317). IEEE.
Stentz, A. (1995). The focussed D* algorithm for real-time replanning. In Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI ’95) (pp. 1652–1659). Morgan Kaufmann.
Daniel, K., Nash, A., Koenig, S., & Felner, A. (2010). Theta*: Any-angle path planning on grids. Journal of Artificial Intelligence Research, 39, 533–579. https://doi.org/10.1613/jair.2994
Harabor, D., & Grastien, A. (2011). Online graph pruning for pathfinding on grid maps. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (pp. 1118–1123). AAAI Press.
Harabor, D., & Grastien, A. (2012). The JPS pathfinding system. In Proceedings of the Fifth Annual Symposium on Combinatorial Search (Vol. 3, No. 1, pp. 207–208). AAAI Press.
Kavraki, L. E., Švestka, P., Latombe, J.-C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580. https://doi.org/10.1109/70.508439
LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. The International Journal of Robotics Research, 20(5), 378–400. https://doi.org/10.1177/02783640122067453
Sriramulu, R., Yadav, A., & Pal, S. B. (2025). Fast and efficient indoor navigation: A hybrid pathfinding approach using rapidly-exploring random tree (RRT)-connect and Dijkstra’s algorithm. PeerJ Computer Science, 11, e3028. https://doi.org/10.7717/peerj-cs.3028
Qi, T., Liu, D., Guo, Y., Zhou, X., Zhao, X., Huang, X., & Wang, Z. (2025). Toward efficient and agent-scalable indoor pathfinding: Intelligent navigation-ability-driven indoor map generation using building information model. Architectural Engineering and Design Management, 1–22. https://doi.org/10.1080/17452007.2025.2451817
Zhou, J., Yang, H., Shen, J., & Zhu, L. (2024). Indoor navigation map design based on spatial complexity. Cartography and Geographic Information Science, 52(1), 69–81. https://doi.org/10.1080/15230406.2024.2339296
Rodenberg, O. B. P. M., Verbree, E., & Zlatanova, S. (2016). Indoor A* pathfinding through an octree representation of a point cloud. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W1, 249–255. https://doi.org/10.5194/isprs-annals-IV-2-W1-249-2016
Gorro, K., Roble, L., Magana, M. A., & Buot, R. P. (2024). Prototype of an indoor pathfinding application with obstacle detection for the visually impaired. International Journal of Advanced Computer Science and Applications, 15(9). https://doi.org/10.14569/IJACSA.2024.0150987
Khainar, A., Dhaske, A., Patil, A., Dhote, S., & Tamkhade, J. (2024). Adaptive multi-criteria indoor pathfinding algorithm using dynamic user preference and real-time data. Journal for Research in Applied Science and Engineering Technology. https://doi.org/10.22214/ijraset.2024.65564
PostGIS Project Steering Committee. (2024). PostGIS: Spatial and geographic objects for PostgreSQL (Version 3.5.4) [Computer software]. https://postgis.net
Zhou, B., Li, Q., Mao, Q., Tu, W., & Zhang, X. (2015). Activity sequence-based indoor pedestrian localization using smartphones. IEEE Transactions on Human-Machine Systems, 45(5), 562–574. https://doi.org/10.1109/THMS.2014.2368092
Zhao, J., Xu, Q., Zlatanova, S., Liu, L., Ye, C., & Feng, T. (2022). Weighted octree-based 3D indoor pathfinding for multiple locomotion types. International Journal of Applied Earth Observation and Geoinformation, 112, 102900. https://doi.org/10.1016/j.jag.2022.102900
Massesa, B., Zhang, F., 2025: UFV-Pathfinding: Indoor Navigation System for the University of the Fraser Valley. GitHub Repository, https://github.com/borismassesa/UFV-Pathfinding (accessed: 21 November 2025).
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2025 Kongwen Zhang, Boris Massesa, Jingwen Gao

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
DATE
Accepted: 2025-11-27
Published: 2025-12-12










