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Abstract: Piezoelectric metamaterials, serving as critical functional media in high-end equipment, face significant design 
challenges due to the mesh bottlenecks of traditional finite element methods and the interpretability shortcomings of purely 
data-driven models. Physical Information Neural Networks (PINNs) establish a robust scientific machine learning paradigm 
by embedding physical equations, offering an innovative solution to these predicaments. This paper systematically reviews 
recent advancements of PINNs in piezoelectric metamaterial analysis and design: drawing upon multiscale modelling 
theory, it elucidates PINNs’ mesh-free advantages in handling high-dimensional parameters and their exceptional capability 
in solving small-sample inverse problems; subsequently, it explores their application paradigms in constructing high-
fidelity forward surrogate models and accelerating efficient topology optimisation. Finally, this paper summarises key 
computational challenges in multi-physics coupling scenarios and outlines potential pathways towards achieving high-fidelity 
intelligent design, aiming to bridge the existing gap between theoretical modelling and engineering practice in piezoelectric 
metamaterials.
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1.Introduction
Piezoelectric metamaterials achieve artificial customisation of electromechanical coupling effects by overcoming the 
physical limitations of natural materials through sophisticated topological design and periodic arrangement of microscopic 
unit cells

 [1]
. This novel intelligent medium exhibits exceptional properties including all non-zero piezoelectric coeffi  cients, 

broad bandgap tunability, and negative Poisson’s ratio
 [2-4]

, holding signifi cant engineering value in fi elds such as aerospace 
vibration suppression, self-powered MEMS sensing, and structural health monitoring

[5]
. As engineering demands evolve 

towards extreme and precision requirements, the design specifi cations for piezoelectric metamaterials have expanded from 
simple mechanical load-bearing to complex “force-electricity-heat” multi-fi eld coupling and anisotropic customisation. This 
signifi cantly increases the complexity of microstructure topology optimisation design.
For a considerable period, mesh-based numerical methods such as the fi nite element method (FEM) and boundary element 
method (BEM) have been the mainstream tools for analysing piezoelectric structures. Whilst these methods demonstrate 
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maturity in conventional problems, they face signifi cant challenges when handling piezoelectric metamaterials due to the 
high-dimensional parameter space and strong multi-fi eld coupling calculations. On one hand, the piezoelectric eff ect involves 
strong bidirectional coupling between stress and electric fi elds. The disparity in magnitude between physical fi elds readily 
leads to deterioration in the condition number of the stiffness matrix, thereby compromising computational convergence. 
On the other hand, the introduction of intricate microstructures—such as triple-periodic minimal surfaces (TPMS) or fractal 
structures

 [6]
—to pursue extreme performance renders high-fidelity meshing a computational bottleneck. Particularly in 

multiscale analysis and topology optimisation scenarios
[7,8]

, computational load increases exponentially with degrees of 
freedom, rendering traditional numerical methods inadequate for real-time simulation and rapid iterative design requirements.
In recent years, deep learning techniques have offered novel avenues for alleviating the aforementioned computational 
bottlenecks

[9]
. Data-driven surrogate models have demonstrated application potential in accelerating structural response 

prediction and aiding additive manufacturing(AM) 
[10,11]

. However, existing purely data-driven models, such as Convolutional 
Neural Networks (CNNs), typically lack physical interpretability and do not explicitly incorporate physical governing 
equations as constraints. This results in models being highly dependent on high-quality labelled data. In piezoelectric 
metamaterial research, acquiring high-fi delity ground truth datasets covering multi-fi eld coupling and complex geometries is 
costly and challenging. Furthermore, the absence of embedded physical constraints means predictions from purely data-driven 
models cannot guarantee strict adherence to energy conservation or boundary conditions. Consequently, their generalisation 
performance beyond the training sample domain (out-of-distribution) is limited, hindering direct application in engineering 
design requiring high reliability.
To address these limitations, Raissi et al. proposed the Physical Information Neural Network (PINN), establishing a scientifi c 
machine learning (SciML) framework that integrates physical principles for solving complex partial diff erential equations 
(PDEs)

 [12]
. By embedding the residuals of the partial diff erential equations governing the physical system as a regularisation 

term within the loss function, PINN achieves high-accuracy solutions for multi-physics problems without mesh generation 
and relying solely on sparse observational data. This dual ‘data-physics’ driven characteristic confers signifi cant advantages 
in handling complex boundary conditions of piezoelectric metamaterials, multi-fi eld coupled inverse problems, and parameter 
identifi cation

[13,14]
, and has been extensively validated for eff ectively resolving diverse engineering PDE problems

[15]
. In recent 

years, topology optimisation methods based on PINN have also seen progressive development and application
[16]

. This paper 
aims to provide a systematic review of the latest research advances in PINNs for analysing the mechanical behaviour of 
piezoelectric metamaterials, multi-physics coupling modelling, and topology-optimised design. The complete framework is 
illustrated in Fig. 1.

Figure1: Current status of computational studies on piezoelectric metamaterials within the PINN framework
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To present the research trajectory of this emerging field with logical clarity, the subsequent sections of this paper are 
organised as follows: Section 2 elaborates on the physical modelling theory of piezoelectric metamaterials, establishing 
the necessity of introducing deep learning by analysing the multiscale computational bottlenecks of traditional methods; 
Section 3 systematically constructs the theoretical framework of PINNs, thoroughly comparing their advantages over finite 
element methods (FEM) and purely data-driven models; Section 4 focuses on core application strategies and cutting-edge 
developments of PINN in performance forward prediction and structural inverse design; Section 5 outlines future research 
directions for PINN.

2.Modelling the Mechanical Behaviour of Piezoelectric Metamaterials
The design and application of piezoelectric metamaterials hinge upon a profound understanding of their complex mechanical 
behaviour, with the core challenge lying in accurately describing the interaction between multi-physics coupling effects and 
multi-scale geometric features. This section aims to establish a systematic physical modelling theoretical framework spanning 
from microscopic mechanisms to macroscopic responses. Building upon the derivation of multi-field coupled governing 
equations using linear piezoelectric theory and continuum mechanics, alongside the establishment of physical conservation 
laws, this framework further elaborates on the representative volume element (RVE)-based equivalent medium theory 
and homogenisation methods. This addresses the unique periodic microstructural characteristics of metamaterials, thereby 
establishing a theoretical bridge mapping microscopic topological parameters to macroscopic effective material properties. 
Concurrently, addressing numerical bottlenecks arising from strong multi-physics coupling and complex geometries, this 
work thoroughly examines critical challenges such as ill-posed stiffness matrices and mesh distortion. This aims to establish a 
robust theoretical foundation for subsequent efficient analysis and topological optimisation.

2.1 Control Equations for Piezoelectric Dielectrics and Multi-Field Coupling Mechanisms
The macroscopic mechanical response of piezoelectric metamaterials is fundamentally governed by the bidirectional 
interaction between elastic and electric fields. This intrinsic electromechanical coupling effect manifests as the reciprocal 
processes of mechanical deformation inducing electrical polarisation (direct piezoelectric effect) and external electric fields 
exciting mechanical strain (reverse piezoelectric effect), endowing the material with exceptional performance in wave field 
manipulation and energy conversion. To quantitatively characterise this intricate dynamic physical process, a comprehensive 
mathematical model must be established within the framework of continuum mechanics and linear piezoelectric theory. 
Under the assumptions of small deformation and quasi-static electric fields, its physical behaviour is governed by the 
combined action of geometric equations, constitutive equations, and equilibrium equations. This yields a closed system of 
partial differential equations describing the mechanical behaviour of piezoelectric media

[17]
.

Consider a piezoelectric continuum occupying spatial region 3Ù ⊂  , whose boundary is
					     Ω Γ Γ Γ Γu t q     � (1)
The displacement and potential are specified at , with natural boundary conditions applied at .
Based upon the assumptions of a continuous medium, small deformations, and a quasi-static electric field, the geometric 
kinematics equations establish a consistent relationship between fundamental field variables and their gradient fields. Within 
the Cartesian coordinate system, for a given mechanical displacement vector iu  and electric potential scalar φ , the linear 
strain tensor ijε  and electric field intensity vector iE  are respectively defined as:
					   

,

1 ( )
2ij ij ji

i i

u u

E

ε

φ

 = +

 = −

�
(2)

The subscript comma denotes the partial derivative with respect to spatial coordinates. The symmetry of ijε  reflects that rigid-
body rotation does not induce strain, while the negative sign of iE indicates that the electric field direction points from higher 
to lower potential.
The electromechanical coupling behaviour of piezoelectric materials is derived from the second-order expansion of the 
thermodynamic potential function. To facilitate the independent treatment of strain and electric field variations, ( , )G Eå  is 
selected as the fundamental thermodynamic potential, expressed as:
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The respective components correspond to elastic potential energy, electromechanical coupling energy, and dielectric energy. 
By taking partial derivatives of this potential function with respect to strain and electric field, the thermodynamic conjugates 
can be obtained:
					     ,ij i

ij i

G GD
E

∂ ∂σ
∂ε ∂

= = − � (4)

Constitutive equations serve as the link between force fields and electric fields, profoundly revealing the thermodynamic 
mechanisms of energy conversion within materials. Based on the above expression utilising Gibbs free energy or electric 
enthalpy density functions, linear equations in stress-charge form can precisely express the dependence of the stress tensor ijσ  
and electric displacement vector iD  upon the independent variables of strain and electric field:
					   

ij ijkl kl kij k

i ikl kl ik k

C e E
D e E
σ ε

ε κ

= −


= +

�
(5)

This formulation simultaneously describes both the direct and inverse piezoelectric effects, ensuring the system satisfies 
energy conservation and the second law of thermodynamics.To systematically derive the control equations, an energy-based 
variational principle is introduced. For piezoelectric dynamics, the actual trajectory of the system should maximise the 
following functional:
					     � (6)
Here, the system’s kinetic energy is defined as:
					     � (7)

Internal Energy (Electrical-Mechanical Coupling):
					     � (8)
External Forces and Electric Potential Energy:
				    � (9)
Total potential energy:
						      � (10)
The internal energy is obtained by integrating the Gibbs free energy density over the entire domain, whilst the external work 
includes that performed by physical forces, surface forces, and surface charges. This constitutes a complete potential energy 
functional, providing a unified starting point for subsequent variational derivations.
By applying independent variational formulations to the displacement field and potential field respectively, and incorporating 
the variational relationship between strain and electric field, the variational representation of the energy functional can be 
expressed as an integral with respect to uδ andδφ . Applying Gauss’s theorem to the spatial integral terms transfers the first-
order derivatives from the variational function to the stress and electric displacement terms, thereby naturally introducing the 
corresponding boundary terms.
Displacement Variational:
					     �

(11)

Use:
					     , , ,

1 ( ),
2ij i j j i i iu u Eδε δ δ δ δφ= + = − � (12)

Integration by parts in space (Gauss’s theorem).
Stress term:
					     � (13)
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Electrical displacement term:
				    � (14)
Ultimately yielding the weak form of the piezoelectric dynamics problem:
				    �

(15)

The ultimate equilibrium state of the system is governed by physical conservation laws. For dynamical problems 
incorporating inertial effects, the mechanical field must satisfy the law of conservation of momentum (namely Newton’s 
Second Law), whilst the electric field, under the assumption of an insulating medium, must satisfy the law of conservation of 
charge (namely Gauss’s law from Maxwell’s equations). Excluding physical forces and internal free charges, the governing 
equations may be expressed as:
						    

,

, 0
ij j i

i i i

f
u D
σ ρ+ =

=

�
(16)

Here, ρ denotes the material density, while iu  represents the second derivative of displacement with respect to time. 
The aforementioned governing equations, coupled with the constitutive relationship and supplemented by corresponding 
mechanical boundary conditions (such as Dirichlet or Neumann boundaries) and electrical boundary conditions, constitute a 
complete boundary value problem for solving the wave dynamics and vibration characteristics of piezoelectric metamaterials.
In FEM, introduce interpolation:
					     ,u φφ ϕ≈ ≈u N d N � (17)
Obtain a semi-discrete system:
				    �

(18)

Where:
						      � (19)

2.2 Equivalent Medium Theory
he macroscopic properties of piezoelectric metamaterials are not solely determined by the intrinsic characteristics of the 
host material, but are primarily governed by the topological structure and periodic arrangement of their microscopic unit 
cells. This artificially engineered heterogeneity enables metamaterials to exhibit extraordinary electromechanical coupling 
properties at the macroscale that are difficult to achieve in natural materials

[18-20]
. To efficiently analyse extensive array 

structures at the engineering scale, the theory of equivalent media must be employed, approximating the microscopic non-
uniform periodic lattice as a macroscopically homogeneous continuous medium 

[21]
. The following sections introduce this 

approach through the definition of equivalent mechanical properties and the homogenisation principle.
Equivalent mechanical properties denote a set of averaged constitutive parameters capable of reproducing the physical 
response of microstructures at the macroscopic scale. For piezoelectric metamaterials, this process is commonly termed 
“homogenisation”. Its theoretical foundation is established within a multiscale analysis framework and has been extensively 
applied to periodic composite materials

[22,23]
.

The Representative Volume Element (RVE)-based volume averaging method combined with finite element analysis (RVE/
FEM) is the most commonly employed homogenisation technique in engineering. It directly solves the unit cell response 
by applying periodic boundary conditions, offering advantages of intuitiveness and high accuracy

[24]
. The macroscopic 

mean stress ijσ , mean strain ijε , mean electric displacement iD , and mean electric field iE  may be defined by integrating 
microscopic field quantities over the unit cell volume V :
					     1 1 ,  ij ij ij ijV V

d d
V V

σ σ ε ε= Ω = Ω∫ ∫
�

(20)

By applying periodic boundary conditions (PBCs) at the cell boundaries and solving the boundary value problem, an 
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equivalent constitutive relationship describing the macroscopic behaviour can be obtained:
					     eff eff

eff eff

ij ijkl kl ijk k

i ikl kl ik k

C e E

D e E

σ ε

ε κ

 = −


= +

�

(21)

Among these, , and denote the equivalent elastic stiffness tensor, equivalent piezoelectric coupling tensor, and equivalent 
dielectric tensor respectively. These parameters constitute core metrics in metamaterial design—for instance, through 
microstructural engineering, one may achieve negative equivalent parameters unattainable in nature or significantly enhanced 
electromechanical coupling coefficients

[25]
.

As computational complexity increases, so too does computational cost. To address this challenge, academia has developed 
multiple homogenisation strategies. Among these, Asymptotic Homogenisation (AH) offers the most rigorous mathematical 
foundation based on two-scale asymptotic expansion theory, capable of capturing higher-order correction terms. However, 
its derivation is cumbersome and struggles with extremely complex topologies

[26,27]
. In recent years, data-driven approaches 

have advanced rapidly, giving rise to new paradigms based on PINN and deep homogenisation frameworks. Such approaches 
achieve mesh-free, rapid prediction by learning mappings from microscopic structures to macroscopic equivalent properties, 
proving particularly suitable for complex topologies and inverse design

 [28, 29]
. They provide efficient tools for optimising 

piezoelectric metamaterials and conducting multiphysics coupling analyses.

2.3 Multi-scale Structures and Computational Challenges
Piezoelectric metamaterials achieve customisation of macroscopic electromechanical properties through the periodic 
arrangement of microscopic topologies. While this cross-scale synergistic characteristic endows the material with 
extraordinary physical properties, it also poses significant challenges to conventional numerical computations. On the one 
hand, high-fidelity characterisation of microscopic geometric details leads to an exponential increase in computational 
degrees of freedom (DoFs) across the entire system. On the other hand, the inherent strong electromechanical coupling 
readily induces severe numerical ill-conditioning in the stiffness matrix. Consequently, overcoming computational scale 
explosion and convergence issues while maintaining physical fidelity has become the core bottleneck in current analysis and 
design.

2.3.1 Unusual physical properties arising from periodic structures
Periodic arrangements represent more than mere geometric repetitions of microscopic units. Wave dynamics analysis grounded 
in the Bloch-Floquet theorem demonstrates that such ordered structures can induce a series of singular dynamic responses. 
Firstly, these structures can form acoustic bandgaps, wherein elastic wave propagation is prohibited within specific frequency 
ranges. This property holds critical significance for broadband active vibration suppression in aerospace structures

 [30]
.  

Secondly, through topological designs such as re-entrant or rotating rigid bodies, metamaterials exhibit negative Poisson’s 
ratio effects, manifesting lateral expansion under tensile stress

 [31]
. Research confirms that this counterintuitive kinematic 

behaviour significantly alters internal stress distributions, amplifying local effective strain on micro-piezoelectric elements by 
several orders of magnitud, thereby substantially enhancing macroscopic electromechanical conversion efficiency and energy 
harvesting power

 [32]
.

However, these complex microstructures are often accompanied by the phenomenon of local field enhancement, where 
the stress or electric field is highly concentrated at the interfaces of multiphase materials, forming “hotspots”. Although 
previous studies have effectively alleviated the computational bottleneck and accuracy contradiction in piezoelectric fracture 
simulation by traditional finite elements through the adaptive isogeometric analysis framework based on PHT splines and 
other optimization methods

[33]
, which improved the local mesh refinement technique (Fig2(a)), they are still fundamentally 

limited by the grid-based discretization solution path. When dealing with tasks such as real-time prediction, reverse design, 
or parameter inversion, they still face high costs of stiffness matrix reassembly and repetitive iterations. Such drastic gradient 
changes require numerical methods to have extremely high spatial resolution; otherwise, it is difficult to capture the true 
physical response.

2.3.2 Discretisation Bottlenecks in Complex Microstructure Topologies
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To achieve high specific strength and multifunctional integrated performance, the unit cell configurations of modern 
piezoelectric metamaterials have evolved from simple truss structures to highly complex biomimetic continuous topologies. 
Typical examples include Triple-Period Minimal Surfaces (TPMS) and Hierarchical/Fractal Structures

 [34]
. Such structures are 

often described by implicit level-set functions, featuring smooth, continuous surfaces and excellent topological properties. 
For these complex configurations, Wang et al. proposed a hybrid optimization framework integrating machine learning (ML) 
and evolutionary algorithms (EA)

 [35]
, demonstrating outstanding performance in the inverse optimization of biomimetic 

stress-strain curves for fractal metamaterials (Fig. 2(b)).
Despite the excellent mechanical potential of the aforementioned geometric design, its complex continuous topological 
features pose significant challenges for discrete numerical simulations. When employing traditional finite FEM, capturing 
surface curvature features with precision necessitates the generation of extremely dense unstructured tetrahedral meshes. 
Upon scaling up single cells to macroscopic arrays, mesh sizes grow exponentially into the tens of millions, frequently 
triggering out-of-memory errors 

[36]
 and resulting in extremely costly simulations and convergence issues (Fig. 2(c)). More 

critically, mesh distortion at complex surfaces readily induces singular Jacobian matrices and computational divergence, 
rendering high-fidelity topology optimization based on meshes impractical for engineering applications

 [37]
.

2.3.3 Multiphysics Strongly Coupled Stiffness Pathology
The analysis of mechanical behaviour in piezoelectric metamaterials confronts severe numerical stability challenges arising 
from strong multiphysics coupling. Unlike purely elastic problems involving single fields, piezoelectric analysis necessitates 
the coupled solution of momentum conservation equations and Maxwell’s equations within a unified framework. However, 
these two physical fields exhibit a vast inherent disparity in energy and parameter scales: the elastic stiffness matrix typically 
reaches magnitudes of 9 1110 ~ 10  Pa, whereas the dielectric constant is merely 9 1110 ~ 10− −  F/m. This parameter difference 
spanning nearly 20 orders of magnitude directly results in the global system stiffness matrix, after discretisation, exhibiting 
extreme ill-conditioning, where the matrix condition number approaches infinity

 [38]
. In traditional finite element method (FEM) 

analysis, such extremely poor condition numbers not only significantly amplify truncation errors in floating-point operations, 
causing conventional linear solvers to stagnate, but also induce severe volume locking or shear locking phenomena

 [39]
, 

necessitating supplementary optimization strategies (Fig. 2(d)).
Addressing this long-standing challenge, subsequent research has converged on a dual-track approach combining algorithmic 
reconstruction with data-driven methods. On one hand, discrete techniques based on smoothing or higher-order geometry 
have been shown to inherently suppress numerical locking caused by strong coupling at the mesh topology level (as 
illustrated in Fig. 2(e)), significantly reducing reliance on complex preprocessing techniques

 [40, 41]
. On the other hand, with 

the emergence of PINNs, researchers began employing neural networks to solve piezoelectric partial differential equations. 
However, they also discovered that the aforementioned multiscale coefficient variations could lead to severe gradient 
singularities during optimization. To address this, recent work introduced a dimensionless normalization and adaptive loss 
weighting strategy 

[42]
, successfully achieving high-accuracy solutions for high-contrast multiphysics problems (Fig. 2(f)) 

without explicitly assembling massive stiffness matrices.
Figure 2: Addressing multiscale structures and numerical computation challenges. (a) An adaptive isogeometric analysis 

framework for PHT splines, alongside other optimisation methods, effectively mitigates computational bottlenecks and accuracy 
trade-offs in traditional finite element simulations of piezoelectric fracture by enhancing local mesh refinement techniques 

[33]. (b) A hybrid optimisation framework combining ML and EA demonstrates superior performance compared to traditional 
finite elements in inverse optimisation of biomimetic stress-strain curves for fractal metamaterials[35]. (c) A single multilayer 
perceptron model architecture within deep ensemble models resolves the extremely costly simulations and non-convergence 

issues associated with self-contact and large deformations [36]. (d) Experiment-driven Bayesian optimisation circumvents 
simulation bottlenecks for large deformations in complex structures, rigorously validated through physical experiments, 

analytical solution comparisons, or high-fidelity simulation data matching [39]. (e) Capability to resolve local accuracy loss issues 
caused by ‘multiphysics strongly coupled ill-posed problems’ through isogeometric analysis and smoothed finite elements[40]. (f) 

PINN resolves numerically ill-posed challenges arising from multi-field coupling, achieving high-precision solutions[42].
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3. Overview and Comparative Analysis of the PINN Method
3.1 An Overview of the Fundamental Theory of PINN
With the introduction of the Physical-based Neural Network (PINN) by Raissi, Karniadakis et al.

[12,14]
, a mesh-free 

computational framework integrating physical mechanisms was established by explicitly embedding physical governing 
equations into the deep learning optimization process (Fig. 3(c)). Unlike traditional purely data-driven approaches, PINNs 
directly map spatial and temporal coordinates to physical field variables. They utilise automatic differentiation (AD) to 
precisely compute derivative information, constructing loss functions with PDE residuals, boundary conditions, and initial 
conditions as regularisation constraints. This mechanism approximates continuous physical fields without requiring mesh 
discretisation, thereby supporting both forward multi-physics simulation and inverse parameter identification based on sparse 
observations within a unified mathematical framework.
Within the PINN framework, deep neural networks (DNNs) serve as generalised function approximators for the physical 
field under investigation. For spatio-temporally dependent physical problems, the network constructs a nonlinear mapping 

: x u from spatio-temporal coordinates x ( , , , )x y z t=  to physical state variables (such as displacement u  or 
potential φ ).
Unlike early universal approximation theorems, modern deep learning theory focuses more on the expressive advantages 
brought by “depth.” Yarotsky’s

[43]
 error bound theory demonstrates that for physical functions with sufficient smoothness, 
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deep networks can achieve equivalent approximation accuracy with far fewer parameters than shallow networks, explaining 
their efficiency in handling high-dimensional physical problems. Furthermore, to overcome the limitation of traditional 
piecewise linear activation functions like Rectified Linear Unit (ReLU)—whose second derivatives are zero, rendering them 
unsuitable for describing physical processes involving higher-order derivatives—PINNs typically employ smooth nonlinear 
activation functions such as the hyperbolic tangent function

[44].
 This not only ensures the continuity of physical residuals 

but also effectively mitigates spectral bias in high-frequency problems, providing a mathematical foundation for simulating 
complex force-electric coupling fields.
Although DNNs possess formidable approximation capabilities, the network itself remains physically agnostic. At this 
juncture, it becomes necessary to introduce PDE that comply with physical laws to physically drive the DNN, thereby 
constraining and guiding its behaviour. For general nonlinear PDE systems:
					     ( ) [ ] (x, ) 0uu u f t

t
∂

= + − =
∂

 
� (22)

The key technology distinguishing it from traditional FEM lies in AD. PINN abandons mesh-based finite difference 
approximations. Instead, it utilises computational graphs and the chain rule to compute arbitrary-order partial derivatives of 
network outputs with respect to input coordinates directly at machine precision. This property confers a genuinely mesh-free 
nature upon PINN: it requires no laborious mesh partitioning for complex geometries such as TPMS, instead establishing 
physical constraints through random sampling of configuration points within the computational domain. Shin et al.

 [37]
 

theoretically demonstrated that under certain conditions, this sequence based on continuous functions converges to the strong 
solutions of linear elliptic and parabolic PDEs, establishing the theoretical completeness of PINN as a rigorous numerical 
solver. The precise and efficient computational results obtained through the AD method lay the groundwork for subsequent 
correction of DNNs driven by loss functions.
The training process of PINN involves solving a multi-objective optimisation problem, where the total loss function is 
typically composed of a data matching term, a boundary condition term, and a weighted physical residual term:
				    data data PDE PDE BC BC( ) w w wθ = + +    � (23)
Where, data : Data matching term, used to assimilate sparse experimental observations or high-fidelity simulation solutions, 
formulated as mean squared error. BC : Boundary/initial condition term, enforcing the network to satisfy Dirichlet or 
Neumann boundary constraints (soft constraints). PDE : Computed physical residual term, which constitutes the core 
of PINN. The network continuously updates its parameters via backpropagation algorithms until the physical residual 
approaches zero, thereby ensuring the DNN’s output satisfies the physical constraints of the PDE.

3.2 Comparison of PINN with Traditional Methods
This section aims to dissect the fundamental differences in physical representation logic between PINNs and traditional FEM 
alongside purely data-driven models (such as CNNs). FEM relies on geometric discretisation, with accuracy constrained 
by mesh quality; purely data-driven models focus on statistical mapping, exhibiting strong data dependency and lacking 
physical induction bias. In contrast, PINN achieves a profound integration of physical mechanisms and data observations 
by embedding governing equations within the loss function. The following sections elucidate PINN’s unique computational 
advantages across three dimensions: geometric representation scalability, forward-inverse problem solving paradigms, and 
physical consistency. These enable PINN to overcome mesh distortion, break through the small-sample bottleneck, and 
achieve multi-field coupled parameter inversion.

3.2.1 Scalability of Geometric Discretisation Constraints and High-Dimensional Computation
As a standard tool in structural mechanics, the accuracy of FEM solutions is strictly constrained by the quality of mesh 
discretisation. While it performs reliably in two-dimensional plane problems, FEM faces severe mesh generation bottlenecks 
when handling complex three-dimensional topologies. Firstly, computational costs become disproportionate: to approximate 
smooth surfaces, the reconstruction (re-meshing) of unstructured meshes frequently consumes over 70% of the entire 
simulation cycle. Secondly, numerical stability risks arise, as intricate geometric features readily induce mesh distortion, 
subsequently triggering singular Jacobian matrices and computational divergence.



10

Vol. 3 No. 1 (2026)Journal of Advances in Engineering and Technology

Traditional CNN models are constrained by voxelization strategies, facing computational barriers and geometric scaling 
effects. To overcome this bottleneck, Ren et al. 

[10]
 and Sharma et al.

 [11]
 shifted toward more efficient low-dimensional 

feature-driven approaches. Utilizing explicit parameter mapping (PSMNN) and graph-based representations respectively, 
they successfully achieved high-fidelity reconstruction of complex metamaterials within low-dimensional spaces (Fig. 
3(a,b)). However, these approaches remain fundamentally data-driven. While they address the efficiency issues of geometric 
characterization, model training still heavily relies on massive finite element simulation labels, failing to overcome the 
fundamental constraint of high data acquisition costs.
By contrast, the breakthrough of PINN lies in its adoption of a continuous sampling mechanism based on coordinate 
points ( , , , )x y z t . As a mesh-free approach, the network size of PINN scales linearly with input dimensions rather than 
exponentially. This inherently enables PINN to circumvent geometric errors and cubic computational bottlenecks associated 
with mesh partitioning when handling three-dimensional solid piezoelectric metamaterials. Consequently, it achieves infinite-
resolution approximations of physical fields across continuous domains at comparatively low computational expense. This 
characteristic naturally accommodates the implicit representation of complex structures such as TPMS

[45]
, whilst loss function 

weighting facilitates multi-physics field balancing
 [46]

.

3.2.2 The Paradigm Shift in Solving Positive and Negative Problems
In the engineering applications of metamaterial design, material parameter identification and topology optimisation are 
often more critical than forward prediction. In this task, the solution paradigms of the three approaches exhibit fundamental 
differences.
Traditional FEM solutions to inverse problems inherently constitute a “black-box” optimisation process. Due to the inability 
to directly compute derivatives, an outer optimisation loop is typically required, involving repeated invocations of the forward 
solver and updates to the geometric mesh. Each parameter iteration necessitates a complete finite element simulation, and this 
high-frequency re-analysis leads to an exponential explosion in computational cost during multi-parameter space searches.
Although CNNs exhibit extremely rapid inference speeds, they face severe data dependency and lack of generalisation 
capability in inverse problems: training a high-precision inversion network requires vast amounts of ‘geometry-response’ 
labelled data, whose generation often still relies on costly FEM simulations due to offline data generation bottlenecks. 
Simultaneously, purely data-driven models merely provide statistical fits to physical laws, lacking physical constraints. 
Should the parameters to be inverted fall outside the distribution range of the training set, the model’s predictive capability 
deteriorates sharply, with no guarantee that results satisfy fundamental physical conservation laws. 
PINN proposes a transformative solution paradigm: within this framework, unknown material or geometric parameters may 
be treated as trainable variables, updated concurrently with network weights during the same backpropagation iteration. 
This enables PINN to simultaneously predict forward physical fields and identify reverse constitutive parameters at the cost 
of a single training run. This physically driven self-supervised mechanism not only eliminates reliance on external labelled 
data but also significantly accelerates the iterative cycle of metamaterial design. Table 1 provides a comparative analysis of 
traditional finite element methods, purely data-driven neural networks, and PINN from multiple perspectives.

Table 1: Comparative analysis of FEM, CNN and PINN frameworks

Feature Finite Element Method (FEM) Pure Data-Driven DL (CNN) Physics-Informed NN (PINN)

Discretization Mesh-based (Dependent on mesh 
quality; prone to distortion)

Grid/Voxel-based (Limited by 
resolution; cubic complexity)

Mesh-free 
(Continuous coordinate sampling; 

infinite resolution)

Physics Enforce-
ment

Intrinsic 
(Variational principles/Weak 

form)

Absent 
(Statistical correlation only; 

“Black-box”)

Constraint-based (PDE residuals 
embedded in loss function)

Data Require-
ment

Minimal 
(BCs & constitutive parameters 

only)

High 
(Requires massive labeled data-

sets from FEM/Exp)

Minimal 
(Physics-driven; capable of zero-shot 

learning)
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Feature Finite Element Method (FEM) Pure Data-Driven DL (CNN) Physics-Informed NN (PINN)

Scalability
Exponential

(Suffers from “Curse of Dimen-
sionality”)

Cubic ( 3( )O N ) (Restricted by 
voxelizati-

on scaling barrier)

Linear
(Scales linearly with input dimen-

sion)

Inverse Problem
Iterative Re-analysis

(High cost due to re-meshing 
loops)

Fast Inference
(Poor extrapolation beyond 

training data)

Unified Optimization (Parameters 
updated via back-propagation)

Generalization
High

(Within continuum mechanics 
assumptions)

Low
(Poor Out-of Distributi-

on performance)

High 
(Guaranteed by physical laws)

3.3 Model Improvement and Evolution of PINN
Despite demonstrating considerable potential in solving general partial differential equations, standard PINNs often exhibit 
convergence stagnation or insufficient accuracy when confronted with the multiscale wave propagation, strongly coupled 
stiffness singularities, and complex periodic topologies characteristic of piezoelectric metamaterials. To address these 
challenges, the academic community has proposed a series of improvement strategies encompassing feature embedding, loss 
weighting, regional decomposition, and operator learning.
Regarding the high-frequency fluctuations and bandgap characteristics commonly observed in the dynamic analysis of 
piezoelectric metamaterials, standard multi-layer perceptrons (MLPs) exhibit significant spectral bias, wherein the network 
tends to prioritise fitting low-frequency components while neglecting high-frequency details. To overcome this limitation, 
Tancik et al.

 [47
] introduced Fourier Feature Embeddings. By mapping input coordinates to a high-dimensional sinusoidal 

feature space, this approach substantially enhances the network’s ability to resolve stress concentrations at microstructural 
edges and propagate short-wavelength phenomena. Building upon this foundation, the SIREN architecture employs periodic 
activation functions to further ensure computational accuracy for higher-order derivatives

[48]
.

To address the parameter disparity and stiffness ill-posedness spanning up to 20 orders of magnitude between force-electric 
coupling fields, adaptive weighting mechanisms have been widely adopted

 [49]
. Unlike traditional methods involving manual 

adjustment of fixed weights, this mechanism dynamically balances the residual contributions from the momentum equation 
and Maxwell’s equations during training by utilising gradient statistical information. This effectively prevents numerically 
dominant mechanical terms from dictating the optimisation direction, thereby ensuring synchronous convergence across 
multiple physical fields.
When confronted with highly complex bionic topological structures such as TPMS, a single network struggles to capture 
global geometric features. Extended PINN and conservative PINN introduce the concept of domain decomposition

 [50]
, 

partitioning complex macroscopic arrays into multiple subdomains. By employing several sub-neural networks to solve 
problems in parallel and exchanging information through interface conditions, this approach not only reduces training 
complexity but also inherently aligns with the demands of high-performance parallel computing.
To overcome the efficiency bottleneck of PINNs’ one-time training and support real-time inverse design, research focus 
is progressively shifting towards neural operator learning. Novel architectures such as DeepONet

[51]
 and Fourier Neural 

Operators
[52]

 no longer confine themselves to solving equations for single operating conditions, but instead strive to learn 
nonlinear operator mappings from microstructural parameters to macroscopic response fields. Once trained, such models 
enable millisecond-scale real-time inference, providing a revolutionary tool for rapid topological optimisation and parameter 
scanning of piezoelectric metamaterials. Table 2 summarises PINN advancements in metamaterial applications.

Table 2: Development of PINN

Year Research Content Key Technical Iterations Key Progress

2020
Physics-informed neural net-
works for inverse problems in 

nano-optics and metamaterials[53]

Fundamental PINN frame-
work, meshless inverse 

scattering

First determination of the effective dielectric constant for 
finite-size scattering systems, surpassing effective medi-

um theory (Fig. 3(d))
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Year Research Content Key Technical Iterations Key Progress

2023 Recent advances in metasurface 
design with PINNs[54]

PINN combined with topolo-
gy optimisation

Emphasising physical accuracy and computational effi-
ciency to enhance the versatility of reverse engineering

2023 PINN for for structural topology 
optimization[55]

A mesh-free topology opti-
misation framework has been 

established.

The improved DEM-PINN not only enables prediction 
but also replaces sensitivity analysis, achieving automatic 

structural evolution (Fig. 3(e))

2024 Dynamically configured PINN 
for topology optimization[16]

Dynamic Subnet Configura-
tion and Active Sampling

Enhance optimization efficiency, replacing finite element 
analysis (Fig. 3(f))

2025 PINNs for topological metama-
ter- ial design[56]

Pre-training + Inverse Design 
Model + Physically Equiva-

lent Integration

Low-frequency broadband performance, flexible wave-
guide manipulation, sixfold expansion of bandgap

2025 LT-PINN: Lagrangian topolo-
gy-conscious PINN[57]

Lagrange Boundary Focusing 
+ Hard Constraint

Processing multi-scale hierarchies to enhance the accura-
cy of complex geometries (Fig. 3(g))

Figure 3: Data-Driven frameworks and the advancement of PINNs. (a) Data-driven framework based on parallel separated 
multi-input neural networks (PSMNN) [10]. (b) Machine learning-based optimisation design of piezoelectric metamaterials[11]. 

(c) Foundational model framework of PINN [14] . (d) Scattering data framework established via PINN framework, enabling 
novel dielectric devices with significantly reduced scattering performance (e) Schematic of the CPINNTO architecture, where 
the output density of S-PINN undergoes forward propagation via the DEM-PINN loss [55] .(f) Design of advanced piezoelectric 

metamaterials through integrated topology and shape optimisation [16] . (g) Lagrangian Topology-Aware PINN (LT-PINN) 
framework for boundary-directed engineering optimisation [57].

4. Applications of PINN in Metamaterials and Multiphysics
This section broadens the perspective from pure algorithmic theory to the cutting edge of complex engineering applications. 
We systematically review the latest developments in PINNs for handling strong multiphysics coupling mechanisms, 
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constructing parametric surrogate models for metamaterials, and driving complex microstructure inverse topology 
optimisation. The emphasis lies in analysing how PINNs overcome the limitations of traditional FEM concerning mesh 
dependency and multi-field interface interpolation. We further explore the theoretical challenges and technical pathways 
involved in migrating these generalised multiphysics solution strategies to the domain of piezoelectric metamaterials.

4.1 Method Transfer in Multiphysics Coupling Scenarios
Prior to the extensive exploration of force-electric coupling in piezoelectric effects by PINN, this methodology had already 
demonstrated its unique advantages in solving classical multiphysics problems such as thermal-mechanical and fluid-structure 
interactions. However, this represents not a simple superposition of physical equations, but rather a fundamental shift in the 
underlying numerical computational paradigm.
In the classical thermo-mechanical coupling problem, the heterogeneity of physical fields already poses significant 
challenges. When an electric field is introduced to form a thermo-electro-mechanical three-field coupling, the complexity 
of the problem increases exponentially. For instance, Zhang et al.

 [58,59] 
recently demonstrated in their study of functionally 

graded piezoelectric plates that the nonlinear interaction between the temperature field and a strong electric field can induce 
highly complex dynamic responses. When addressing such multi-physics systems, traditional PINNs are highly susceptible 
to “Gradient Pathology” in multi-objective optimization due to the vastly different decay scales and energy levels typically 
exhibited by temperature, stress, and electric potential fields. To address this common challenge, recent work successfully 
balanced differences among control equations in transient 3D problems and large-scale ratio structures by introducing 
adaptive weighting strategies and mixed variable formulations

 [60]
, effectively resolving network convergence stagnation 

caused by stiffness mismatch (Fig. 4(b)).
In the more complex domain of fluid-structure interaction, PINN demonstrates flexibility surpassing traditional mesh-based 
methods. A domain decomposition framework combined with the Immersed Boundary Method has been proven capable 
of accurately simulating convective heat transfer and fluid stress transfer at moving interfaces

 [61]
. Unlike traditional FEM, 

which is often constrained by cumbersome and error-prone data interpolation mapping between heterogeneous physical fields 
(e.g., fluid and solid), PINN’s continuous domain coordinate sampling eliminates this limitation entirely. As demonstrated 
by Rezaei et al. 

[62]
, by introducing hybrid variable formulations, PINN can directly construct and solve coupled equation 

systems on the same set of spatial grid points, effectively circumventing mesh compatibility issues at interfaces. This unique 
advantage enables the network to simultaneously approximate velocity, pressure, displacement, and potential fields within a 
unified coordinate system, achieving high-precision multiphysics coupling solutions without requiring mesh mapping.
This “meshless, unified coordinate system” feature holds revolutionary significance for piezoelectric metamaterial research. 
In piezoelectric composites, the electric field concentration effect typically occurs within an extremely narrow region at 
the two-phase interface, requiring extremely high-density mesh refinement in traditional FEM. PINNs, however, employ 
residual-driven adaptive sampling to automatically identify regions of rapid change in the electric-force coupling gradient. 
This approach eliminates meshing compatibility issues at multi-field interfaces, offering a novel strategy for high-fidelity 
simulation of interfacial polarization behavior in piezoelectric microstructures

 [63]
.

4.2 Forward prediction of metamaterial mechanical behaviour
In solving forward problems, PINN is increasingly becoming the preferred tool for constructing efficient parametric surrogate 
models for metamaterials. Traditional data-driven deep learning models rely on massive amounts of FEM simulation data 
as labels, representing “black-box” interpolation. In contrast, the PINN approach directly embeds control equations into 
the loss function, eliminating the need to pre-generate large discrete datasets. In the field of mechanical metamaterials, 
existing research has leveraged this mechanism to handle complex linear elastic and elastoplastic constitutive relations

 [64]
. 

Furthermore, it has established nonlinear mappings between microscopic lattice configurations and macroscopic dispersion 
relations (as shown in Fig. 4(c)), enabling sub-second predictions of band structures

 [56]
.

Extending this paradigm to the field of piezoelectric metamaterials holds immense engineering value but also presents 
formidable computational challenges due to the high-dimensional parameter space. Unlike purely elastic media, piezoelectric 
response involves not only the intrinsic coupling of fourth-order elastic tensors and third-order piezoelectric tensors but is 
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also significantly modulated by the impedance characteristics of external shunt circuits. Under extreme operating conditions, 
this predictive complexity is further amplified. As demonstrated by Zhang et al.

 [65-67]
 in their recent studies on piezoelectric 

shells, flexible cables, and membrane structures, neglecting nonlinear constitutive relationships under the combined effects 
of strong electric fields and geometric nonlinearity leads to substantial errors in dynamic response prediction. Maintaining 
accuracy necessitates the use of computationally expensive numerical techniques. This scenario of strong nonlinear coupling, 
where traditional computational costs surge dramatically, powerfully underscores the urgency of developing efficient PINN-
based surrogate models to achieve rapid, high-fidelity predictions.
For such prediction challenges involving complex circuits and multi-field coupling, recent breakthroughs have demonstrated 
promising solutions. For instance, by constructing a hybrid PINN architecture incorporating circuit topology constraints, 
researchers successfully integrated geometric parameters, material polarization directions, and circuit loads as network inputs, 
achieving direct mapping to macroscopic voltage outputs or impedance spectra

[68]
. Similarly, in more intricate piezoelectric 

semiconductor studies, as illustrated in Fig. 4(a), PINN has also proven effective in tackling the nonlinear prediction 
challenge of the thermo-deformation-polarization-carrier (TDPC) quadruple field coupling

 [13]
, further demonstrating its 

exceptional generalization capability within high-dimensional multi-physics parameter spaces.

4.3 Reverse Engineering and Topology Optimisation
Reverse design, as the core approach for achieving on-demand customization of metamaterials, has long been constrained by 
the high computational cost of forward solutions and the difficulty in obtaining gradients. Unlike traditional Solid Isotropic 
Material Penalty (SIMP) or Level Set Method approaches, PINN-driven topology optimization introduces a Neural Implicit 
Representation mechanism. This eliminates direct dependence on discrete mesh cell density through fully connected function 
approximation. Within this framework, geometric evolution is reformulated as an iterative update of neural network weights. 
This parameterization fully leverages automatic differentiation, effectively circumventing the cumbersome sensitivity analysis 
inherent in traditional adjoint methods. This “meshless” or “weakly meshed” characteristic enables PINNs to drive geometric 
configurations to evolve autonomously within a continuous design space while satisfying control equations, thereby 
pioneering a novel mathematical solution pathway for structural optimization

 [56]
.

In the field of piezoelectric metamaterials, PINN demonstrates exceptional advantages, primarily manifested in its capability 
to solve inverse problems under multi-physics coupling constraints. Due to the bidirectional strong coupling between force 
and electric fields in the piezoelectric effect, traditional optimization methods often get stuck at local optima when pursuing 
maximization of piezoelectric coupling coefficients or sensing sensitivity in specific directions, primarily due to multi-
objective conflicts and the enormous computational demands of the Jacobian matrix

 [69]
. In contrast, PINNs can directly 

embed complex force-electric coupling equations as soft constraints within the loss function, enabling the network to 
inherently satisfy physical conservation laws while seeking optimal microstructure parameters. Although direct PINN-based 
topology optimization for piezoelectric metamaterial microstructures remains exploratory, pioneering work has demonstrated 
its immense potential for handling complex geometries

 [70]
. Particularly for microstructures like TPMS or hierarchical 

structures—which exhibit outstanding piezoelectric-mechanical properties but possess complex geometries—PINN holds 
promise to overcome computational barriers of traditional numerical methods. It enables direct inverse derivation of optimal 
topologies based on target piezoelectric responses (as shown in Fig. 4(d)), providing novel mathematical tools and theoretical 
foundations for designing next-generation smart metamaterials with breakthrough performance metrics

 [71]
.

Figure 4: Applications of PINNs in metamaterials and multi-physics fields. (a) The high agreement between the DDPINNs-
TD model based on three-dimensional theory and the COMSOL structure demonstrates its reliability under complex multi-

field coupling [13]. (b) Investigation of thermal-mechanical coupling through network architecture and loss functions tailored 
for multi-physics problems, integrating data and physical models with transfer learning-based input and loss functions [60]. 

(c) Inverse design outcomes under diverse objectives demonstrated exceptional accuracy in predicting dispersion bandgaps, 
robustly validating its superior performance in metamaterial design [56]. (d) A deep learning-based inverse design framework 

offers a promising and viable approach for designing composite TPMS structures [71].



15

Vol. 3 No. 1 (2026)Journal of Advances in Engineering and Technology

Conclusion
This paper provides a systematic review of the latest research advances in PINNs for analysing the mechanical behaviour 
of piezoelectric metamaterials, multi-physics coupling modelling, and topology-optimised design. By thoroughly analysing 
the computational bottlenecks of traditional numerical methods (such as FEM) when handling complex microstructures, 
alongside the generalisation limitations of purely data-driven deep learning models, we demonstrate the unique advantages of 
PINN as a SciML framework that integrates physical principles. This framework proves particularly effective in addressing 
high-dimensional, multi-field coupling, and inverse problems. Through a comprehensive review of existing literature, the 
principal conclusions and perspectives drawn in this paper are summarised as follows:
(1)Mesh-free properties overcome geometric complexity constraints: Unlike traditional finite element methods reliant on 
high-fidelity mesh partitioning, PINN employs a mesh-free solution strategy based on coordinate points. This characteristic 
entirely eliminates computational burdens arising from mesh distortion and reconstruction when handling complex topologies 
common in piezoelectric metamaterials, thereby providing a benchmark for multiphysics simulations under extreme 
geometric configurations.
(2)The physically embedded mechanism ensures prediction reliability: PINN successfully overcomes the issues of 
interpretability and physical inconsistency faced by purely data-driven models by explicitly embedding piezoelectric 
constitutive equations, geometric equations, and boundary conditions as regularisation terms within the loss function. 
Even under sparse or unlabelled data conditions, PINN ensures predictions strictly adhere to energy conservation and 
thermodynamic laws, significantly enhancing the model’s generalisation capability.
(3)The inherent advantages of inverse problem solving and parameter identification: In the inverse design of piezoelectric 
metamaterials, PINN demonstrates superior robustness compared to traditional gradient-based optimisation algorithms. It 
enables the simultaneous optimisation of unknown material parameters or damage fields as trainable variables alongside 
network weights, thereby accurately identifying anisotropic parameters and microstructural defects within noisy experimental 
data. This achieves integrated solution for both direct and inverse problems.
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(4)A marked improvement in topology optimisation efficiency: Integrating PINNs into the topology optimisation loop to 
construct physics-based surrogate models effectively resolves the issues of costly Jacobian matrix computations and slow 
iterative convergence inherent in traditional methods. This approach not only accelerates multi-objective optimisation 
processes but also provides real-time gradient information for designing metamaterials with specific bandgap characteristics 
or maximised electromechanical coupling coefficients.
In summary, the PINN framework effectively balances computational efficiency and physical fidelity by integrating 
physical mechanisms with data-driven approaches, thereby establishing its leading position in the analysis of piezoelectric 
metamaterials. To bridge the gap between theoretical modelling and engineering implementation, future research should focus 
on developing adaptive weighting strategies to overcome optimisation pathologies arising from multi-field coupling, whilst 
leveraging neural operators to address real-time inference bottlenecks in large-scale systems. With breakthroughs in these key 
technologies, this methodology holds promise to evolve into a robust computational strategy for tackling complex coupled 
problems, providing core theoretical support for the precise design of next-generation high-end intelligent equipment.

Funding
No

Conflict of Interests
The authors declare that there is no conflict of interest regarding the publication of this paper.

Reference
[1]	� Bischof, R., & Kraus, M. A. (2025). Multi-objective loss balancing for physics-informed deep learning. Computer 

Methods in Applied Mechanics and Engineering, 439, 117914. https://doi.org/10.1016/j.cma.2025.117914
[2]	� Burbano, A., Zorin, D., & Jarosz, W. (Eds.). (2024). Data-efficient discovery of hyperelastic TPMS metamaterials with 

extreme energy dissipation. In Special Interest Group on Computer Graphics and Interactive Techniques Conference 
Conference Papers 24. ACM.

[3]	� Chen, K., Dong, X., Gao, P., Chen, Q., Peng, Z., & Meng, G. (2025). Physics-informed neural networks for topological 
metamaterial design and mechanical applications. International Journal of Mechanical Sciences, 301, 110489. https://doi.
org/10.1016/j.ijmecsci.2025.110489

[4]	� Chen, S., Tong, X., Huo, Y., Liu, S., Yin, Y., Tan, M., Cai, K., & Ji, W. (2024). Piezoelectric biomaterials inspired by 
nature for applications in biomedicine and nanotechnology. Advanced Materials, 36, 2406192. https://doi.org/10.1002/
adma.202406192

[5]	� Chen, Y., Lu, L., Karniadakis, G. E., & Dal Negro, L. (2020). Physics-informed neural networks for inverse problems in 
nano-optics and metamaterials. Optics Express, 28, 11618. https://doi.org/10.1364/OE.384875

[6]	� Danawe, H., & Tol, S. (2023). Electro-momentum coupling tailored in piezoelectric metamaterials with resonant shunts. 
APL Materials, 11, 091118. https://doi.org/10.1063/5.0165267

[7]	� Didilis, K., Selicani, G. V., Tinti, V. B., Mobin, M., Brouczek, D., Staal, L., Marani, D., Insinga, A. R., Haugen, A. B., 
& Esposito, V. (2026). Topology-driven electromechanical actuation in 3D-printed TPMS piezoelectric ceramics. Acta 
Materialia, 303, 121724. https://doi.org/10.1016/j.actamat.2025.121724

[8]	� Fan, G., Guo, N., Ahmed, M., & Ghazouani, N. (2025). Physics-informed neural network-enhanced simulation to 
estimate piezoelectric energy harvesting in cantilevered metamaterial concrete systems under wind excitation. Mechanics 
of Advanced Materials and Structures, 1–17. https://doi.org/10.1080/15376494.2025.2476205

[9]	� Fang, D., & Tan, J. (2022). Immersed boundary-physics informed machine learning approach for fluid–solid coupling. 
Ocean Engineering, 263, 112360. https://doi.org/10.1016/j.oceaneng.2022.112360

[10]	�Fang, Z., & Zhan, J. (2020). Deep physical informed neural networks for metamaterial design. IEEE Access, 8, 
24506–24513. https://doi.org/10.1109/ACCESS.2019.2963375

[11]	�Faraci, D., Comi, C., & Marigo, J.-J. (2022). Band gaps in metamaterial plates: Asymptotic homogenization and 
bloch-floquet approaches. Journal of Elasticity, 148, 55–79. https://doi.org/10.1007/s10659-022-09879-3



17

Vol. 3 No. 1 (2026)Journal of Advances in Engineering and Technology

[12]	�Gao, M., He, Z., Liu, J., Lü, C., & Wang, G. (2025). A dynamic homogenization method for elastic wave band gap and 
initial-boundary value problem analysis of piezoelectric composites with elastic and viscoelastic periodic layers. Journal 
of the Mechanics and Physics of Solids, 197, 106048. https://doi.org/10.1016/j.jmps.2025.106048

[13]	�Gao, Z., Lei, Y., Li, Z., Yang, J., Yu, B., Yuan, X., Hou, Z., Hong, J., & Dong, S. (2025). Artificial piezoelectric metama-
terials. Progress in Materials Science, 151, 101434. https://doi.org/10.1016/j.pmatsci.2025.101434

[14]	�Guo, J., Zhu, H., Yang, Y., & Guo, C. (2025). Advances in physics-informed neural networks for solving complex partial 
differential equations and their engineering applications: A systematic review. Engineering Applications of Artificial 
Intelligence, 161, 112044. https://doi.org/10.1016/j.engappai.2025.112044

[15]	�Haghighat, E., Raissi, M., Moure, A., Gomez, H., & Juanes, R. (2021). A physics-informed deep learning framework for 
inversion and surrogate modeling in solid mechanics. Computer Methods in Applied Mechanics and Engineering, 379, 
113741. https://doi.org/10.1016/j.cma.2021.113741

[16]	�Harandi, A., Moeineddin, A., Kaliske, M., Reese, S., & Rezaei, S. (2024). Mixed formulation of physics-informed neural 
networks for thermo-mechanically coupled systems and heterogeneous domains. Numerical Methods in Engineering, 
125, e7388. https://doi.org/10.1002/nme.7388

[17]	�He, Z., Liu, J., & Chen, Q. (2023). Higher-order asymptotic homogenization for piezoelectric composites. International 
Journal of Solids and Structures, 264, 112092. https://doi.org/10.1016/j.ijsolstr.2022.112092

[18]	�Institute of Electrical and Electronics Engineers. (1988). IEEE standard on piezoelectricity. https://doi.org/10.1109/
IEEESTD.1988.79638

[19]	�Jagtap, A. D., Kharazmi, E., & Karniadakis, G. E. (2020). Conservative physics-informed neural networks on discrete 
domains for conservation laws: Applications to forward and inverse problems. Computer Methods in Applied Mechanics 
and Engineering, 365, 113028. https://doi.org/10.1016/j.cma.2020.113028

[20]	�Jeong, H., Batuwatta-Gamage, C., Bai, J., Xie, Y. M., Rathnayaka, C., Zhou, Y., & Gu, Y. (2023). A complete physics-in-
formed neural network-based framework for structural topology optimization. Computer Methods in Applied Mechanics 
and Engineering, 417, 116401. https://doi.org/10.1016/j.cma.2023.116401

[21]	�Ji, W., Chang, J., Xu, H.-X., Gao, J. R., Gröblacher, S., Urbach, H. P., & Adam, A. J. L. (2023). Recent advances in 
metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and 
topology optimization methods. Light Science & Applications, 12, 169. https://doi.org/10.1038/s41377-023-01218-y

[22]	�Jiang, J., Wu, J., Chen, Q., Chatzigeorgiou, G., & Meraghni, F. (2023). Physically informed deep homogenization neural 
network for unidirectional multiphase/multi-inclusion thermoconductive composites. Computer Methods in Applied 
Mechanics and Engineering, 409, 115972. https://doi.org/10.1016/j.cma.2023.115972

[23]	�Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine 
learning. Nature Reviews Physics, 3, 422–440. https://doi.org/10.1038/s42254-021-00314-5

[24]	�Kiran, R., Nguyen-Thanh, N., Yu, H., & Zhou, K. (2023). Adaptive isogeometric analysis–based phase-field modeling of 
interfacial fracture in piezoelectric composites. Engineering Fracture Mechanics, 288, 109181. https://doi.org/10.1016/
j.engfracmech.2023.109181

[25]	�Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2021). Fourier neural 
operator for parametric partial differential equations. https://doi.org/10.48550/arXiv.2010.08895

[26]	�Li, Z., Yi, X., Yang, J., Bian, L., Yu, Z., & Dong, S. (2022). Designing artificial vibration modes of piezoelectric devices 
using programmable, 3D ordered structure with piezoceramic strain units. Advanced Materials, 34, 2107236. https://doi.
org/10.1002/adma.202107236

[27]	�Liu, C., He, Z., Lü, C., & Wang, G. (2024). Concurrent topology optimization of multiscale piezoelectric actuators. 
International Journal of Solids and Structures, 290, 112664. https://doi.org/10.1016/j.ijsolstr.2024.112664

[28]	�Liu, Y., He, H., Cao, Y., Liang, Y., & Huang, J. (2024). Inverse design of TPMS piezoelectric metamaterial based on deep 
learning. Mechanics of Materials, 198, 105109. https://doi.org/10.1016/j.mechmat.2024.105109

[29]	�Lu, L., Jin, P., Pang, G., Zhang, Z., & Karniadakis, G. E. (2021). Learning nonlinear operators via DeepONet based on 



18

Vol. 3 No. 1 (2026)Journal of Advances in Engineering and Technology

the universal approximation theorem of operators. Nature Machine Intelligence, 3, 218–229. https://doi.org/10.1038/
s42256-021-00302-5

[30]	�McClenny, L. D., & Braga-Neto, U. M. (2023). Self-adaptive physics-informed neural networks. Journal of Computa-
tional Physics, 474, 111722. https://doi.org/10.1016/j.jcp.2022.111722

[31]	�Meng, C., Thrane, P. C. V., Ding, F., Gjessing, J., Thomaschewski, M., Wu, C., Dirdal, C., & Bozhevolnyi, S. I. (2021). 
Dynamic piezoelectric MEMS-based optical metasurfaces. Science Advances, 7, eabg5639. https://doi.org/10.1126/
sciadv.abg5639

[32]	�Nassar, M. E., Saeed, N. A., & Nasedkin, A. (2023). Determination of effective properties of porous piezoelectric com-
posite with partially randomly metalized pore boundaries using finite element method. Applied Mathematical Modelling, 
124, 241–256. https://doi.org/10.1016/j.apm.2023.07.025

[33]	�Nguyen, C., Zhuang, X., Chamoin, L., Zhao, X., Nguyen-Xuan, H., & Rabczuk, T. (2020). Three-dimensional topology 
optimization of auxetic metamaterial using isogeometric analysis and model order reduction. Computer Methods in 
Applied Mechanics and Engineering, 371, 113306. https://doi.org/10.1016/j.cma.2020.113306

[34]	�Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework 
for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational 
Physics, 378, 686–707. https://doi.org/10.1016/j.jcp.2018.10.045

[35]	�Ravanbod, M., & Ebrahimi-Nejad, S. (2024). Perforated auxetic honeycomb booster with reentrant chirality: A new 
design for high-efficiency piezoelectric energy harvesting. Mechanics of Advanced Materials and Structures, 31, 
9857–9872. https://doi.org/10.1080/15376494.2023.2280997

[36]	�Ren, M., Wang, C., Moshrefi-Torbati, M., Yurchenko, D., Shu, Y., & Yang, K. (2025). Optimization of a comb-like beam 
piezoelectric energy harvester using the parallel separated multi-input neural network surrogate model. Mechanical 
Systems and Signal Processing, 224, 111939. https://doi.org/10.1016/j.ymssp.2024.111939

[37]	�Ren, X., Das, R., Tran, P., Ngo, T. D., & Xie, Y. M. (2018). Auxetic metamaterials and structures: A review. Smart 
Materials and Structures, 27, 023001. https://doi.org/10.1088/1361-665X/aaa61c

[38]	�Rezaei, S., Harandi, A., Moeineddin, A., Xu, B.-X., & Reese, S. (2022). A mixed formulation for physics-informed 
neural networks as a potential solver for engineering problems in heterogeneous domains: Comparison with finite 
element method. Computer Methods in Applied Mechanics and Engineering, 401, 115616. https://doi.org/10.1016/
j.cma.2022.115616

[39]	�Roberts, A. (2024). Embed in ensemble to rigorously and accurately homogenize quasi-periodic multi-scale heteroge-
neous material. ANZIAM Journal, 66, 1–34. https://doi.org/10.1017/S1446181124000099

[40]	�Serrao, P. H., & Kozinov, S. (2024). Robust mixed FE for analyses of higher-order electromechanical coupling in 
piezoelectric solids. Computational Mechanics, 73, 1203–1217. https://doi.org/10.1007/s00466-023-02407-7

[41]	�Sharma, D., & Hiremath, S. S. (2022a). Additively manufactured mechanical metamaterials based on triply periodic 
minimal surfaces: Performance, challenges, and application. Mechanics of Advanced Materials and Structures, 29, 
5077–5107. https://doi.org/10.1080/15376494.2021.1948151

[42]	�Sharma, D., & Hiremath, S. S. (2022b). Additively manufactured mechanical metamaterials based on triply periodic 
minimal surfaces: Performance, challenges, and application. Mechanics of Advanced Materials and Structures, 29, 
5077–5107. https://doi.org/10.1080/15376494.2021.1948151

[43]	�Sharma, S., Ammu, S. K., Thakolkaran, P., Jovanova, J., Masania, K., & Kumar, S. (2025). Piezoelectric truss metama-
terials: Data-driven design and additive manufacturing. npj Metamaterials, 1, 9. https://doi.org/10.1038/s44455-025-
00009-2

[44]	�Shi, J., & Akbarzadeh, A. H. (2019). Architected cellular piezoelectric metamaterials: Thermo-electro-mechanical 
properties. Acta Materialia, 163, 91–121. https://doi.org/10.1016/j.actamat.2018.10.001

[45]	�Shi, J., Ju, K., Chen, H., Orsat, V., Sasmito, A. P., Ahmadi, A., & Akbarzadeh, A. (2025). Ultrahigh piezoelectricity in 
truss‐based ferroelectric ceramics metamaterials. Advanced Functional Materials, 35, 2417618. https://doi.org/10.1002/



19

Vol. 3 No. 1 (2026)Journal of Advances in Engineering and Technology

adfm.202417618
[46]	�Shin, Y., Darbon, J., & Karniadakis, G. E. (2020). On the convergence of physics informed neural networks for linear 

second-order elliptic and parabolic type PDEs. Communications in Computational Physics, 28, 2042–2074. https://doi.
org/10.4208/cicp.OA-2020-0193

[47]	�Sitzmann, V., Martel, J. N. P., Bergman, A. W., Lindell, D. B., & Wetzstein, G. (2020). Implicit neural representations 
with periodic activation functions. https://doi.org/10.48550/arXiv.2006.09661

[48]	�Somnic, J., & Jo, B. W. (2022). Status and challenges in homogenization methods for lattice materials. Materials, 15, 
605. https://doi.org/10.3390/ma15020605

[49]	�Stankiewicz, G., Dev, C., Weichelt, M., Fey, T., & Steinmann, P. (2024). Towards advanced piezoelectric metamaterial 
design via combined topology and shape optimization. Structural and Multidisciplinary Optimization, 67, 26. https://doi.
org/10.1007/s00158-024-03742-w

[50]	�Sun, R., Jeong, H., Zhao, J., Gou, Y., Sauret, E., Li, Z., & Gu, Y. (2024). A physics-informed neural network framework 
for multi-physics coupling microfluidic problems. Computers & Fluids, 284, 106421. https://doi.org/10.1016/j.compflu-
id.2024.106421

[51]	�Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J. 
T., & Ng, R. (2020). Fourier features let networks learn high frequency functions in low dimensional domains. https://
doi.org/10.48550/arXiv.2006.10739

[52]	�Tandis, N., & Tandis, E. (2025). A physics-informed machine learning approach to piezoelectric plate modelling. 
Engineering Applications of Artificial Intelligence, 160, 111847. https://doi.org/10.1016/j.engappai.2025.111847

[53]	�Tassi, N., Bakkali, A., Fakri, N., Azrar, L., & Aljinaidi, A. (2021). Well conditioned mathematical modeling for homog-
enization of thermo-electro-mechanical behaviors of piezoelectric composites. Applied Mathematical Modelling, 99, 
276–293. https://doi.org/10.1016/j.apm.2021.06.019

[54]	�Tran, T. V., Nanthakumar, S. S., & Zhuang, X. (2025). Deep learning-based framework for the on-demand inverse design 
of metamaterials with arbitrary target band gap. npj Artificial Intelligence, 1, 2. https://doi.org/10.1038/s44387-025-
00001-1

[55]	�Wang, B., Meng, D., Lu, C., Zhang, Q., Zhao, M., & Zhang, J. (2025). Physics-informed neural networks for analyzing 
size effect and identifying parameters in piezoelectric semiconductor nanowires. Journal of Applied Physics, 137, 
024303. https://doi.org/10.1063/5.0248278

[56]	�Wang, D., Dong, L., & Gu, G. (2023). 3D printed fractal metamaterials with tunable mechanical properties and shape 
reconfiguration. Advanced Functional Materials, 33, 2208849. https://doi.org/10.1002/adfm.202208849

[57]	�Wu, C., Zhu, M., Tan, Q., Kartha, Y., & Lu, L. (2023). A comprehensive study of non-adaptive and residual-based 
adaptive sampling for physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering, 
403, 115671. https://doi.org/10.1016/j.cma.2022.115671

[58]	�Xiao, Z., Weng, Y., Yao, W., Chen, W., & Zhang, C. (2026). Nonlinear multi-field coupling analysis of piezoelectric 
semiconductors via PINNs. Science China Physics, Mechanics & Astronomy, 69, 214611. https://doi.org/10.1007/
s11433-025-2742-6

[59]	�Yang, J., Li, Z., Xin, X., Gao, X., Yuan, X., Wang, Z., Yu, Z., Wang, X., Zhou, J., & Dong, S. (2019). Designing 
electromechanical metamaterial with full nonzero piezoelectric coefficients. Science Advances, 5, eaax1782. https://doi.
org/10.1126/sciadv.aax1782

[60]	�Yang, Y., Meng, J., Fan, W., Lv, J., & Xu, B. (2025). Virtual element method for piezoelasticity. Numerical Methods in 
Engineering, 126, e70191. https://doi.org/10.1002/nme.70191

[61]	�Yarotsky, D. (2017). Error bounds for approximations with deep ReLU networks. Neural Networks, 94, 103–114. https://
doi.org/10.1016/j.neunet.2017.07.002

[62]	�Yin, J., Wen, Z., Li, S., Zhang, Y., & Wang, H. (2024). Dynamically configured physics-informed neural network in 
topology optimization applications. Computer Methods in Applied Mechanics and Engineering, 426, 117004. https://doi.



20

Vol. 3 No. 1 (2026)Journal of Advances in Engineering and Technology

org/10.1016/j.cma.2024.117004
[63]	�Zhang, Y., Huang, Y., Zhao, S., Jiao, Z., Lü, C., & Yang, J. (2025a). Nonlinear dynamic response and stability of 

piezoelectric shells with piezoelectric nonlinearities. International Journal of Mechanical Sciences, 304, 110731. https://
doi.org/10.1016/j.ijmecsci.2025.110731

[64]	�Zhang, Y., Zhu, H., Zhao, S., Ni, Z., Lü, C., & Yang, J. (2025b). Nonlinear dynamic response of functionally graded 
plates with piezoelectric nonlinearity. European Journal of Mechanics - A/Solids, 114, 105776. https://doi.org/10.1016/
j.euromechsol.2025.105776

[65]	�Zhang, Y., Guo, X., Wu, Y., Zhang, Y. Y., & Lü, C. (2025c). Active control of cables with piezoelectric actuation 
considering geometric and material nonlinearities. Engineering Structures, 340, 120773. https://doi.org/10.1016/
j.engstruct.2025.120773

[66]	�Zhang, Y., Guo, X., Wu, Y., Zhang, Y. Y., Zhang, H., & Lü, C. (2024a). Nonlinear thermo-electro-mechanical responses 
and active control of functionally graded piezoelectric plates subjected to strong electric fields. Thin-Walled Structures, 
205, 112375. https://doi.org/10.1016/j.tws.2024.112375

[67]	�Zhang, Y., Guo, X., Wu, Y., Zhang, Y. Y., Zhang, H., & Lü, C. (2024b). Vibration control of membrane structures by 
piezoelectric actuators considering piezoelectric nonlinearity under strong electric fields. Engineering Structures, 315, 
118413. https://doi.org/10.1016/j.engstruct.2024.118413

[68]	�Zhang, Z., Lee, J.-H., & Gu, G. X. (2022). Rational design of piezoelectric metamaterials with tailored electro-momen-
tum coupling. Extreme Mechanics Letters, 55, 101785. https://doi.org/10.1016/j.eml.2022.101785

[69]	�Zhao, W., Hao, R., Zhang, M., Chen, Q., Yang, Z., & Chen, X. (2025). Physically informed neural networks for homog-
enization and localization of composites with periodic microstructures. Composite Structures, 367, 119260. https://doi.
org/10.1016/j.compstruct.2025.119260

[70]	�Zhou, L., Geng, J., Chen, P., Zhu, H., Tian, H., & Liu, X. (2024). Mechanic-electric coupling cell-based smoothed 
isogeometric analysis for the static behaviors of piezoelectric structures. Acta Mechanica, 235, 2803–2821. https://doi.
org/10.1007/s00707-024-03856-8

[71]	�Zhou, Y., Wang, Z., Zhou, K., Tang, H., & Li, X. (2025). LT-PINN: Lagrangian topology-conscious physics-informed 
neural network for boundary-focused engineering optimization. https://doi.org/10.48550/arXiv.2506.06300


