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Abstract: Piezoelectric metamaterials, serving as critical functional media in high-end equipment, face significant design
challenges due to the mesh bottlenecks of traditional finite element methods and the interpretability shortcomings of purely
data-driven models. Physical Information Neural Networks (PINNs) establish a robust scientific machine learning paradigm
by embedding physical equations, offering an innovative solution to these predicaments. This paper systematically reviews
recent advancements of PINNs in piezoelectric metamaterial analysis and design: drawing upon multiscale modelling
theory, it elucidates PINNs’ mesh-free advantages in handling high-dimensional parameters and their exceptional capability
in solving small-sample inverse problems; subsequently, it explores their application paradigms in constructing high-
fidelity forward surrogate models and accelerating efficient topology optimisation. Finally, this paper summarises key
computational challenges in multi-physics coupling scenarios and outlines potential pathways towards achieving high-fidelity
intelligent design, aiming to bridge the existing gap between theoretical modelling and engineering practice in piezoelectric
metamaterials.
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1.Introduction

Piezoelectric metamaterials achieve artificial customisation of electromechanical coupling effects by overcoming the
physical limitations of natural materials through sophisticated topological design and periodic arrangement of microscopic
unit cells'". This novel intelligent medium exhibits exceptional properties including all non-zero piezoelectric coefficients,
broad bandgap tunability, and negative Poisson’s ratio [2_4], holding significant engineering value in fields such as aerospace
vibration suppression, self-powered MEMS sensing, and structural health monitoring[s]. As engineering demands evolve
towards extreme and precision requirements, the design specifications for piezoelectric metamaterials have expanded from
simple mechanical load-bearing to complex “force-electricity-heat” multi-field coupling and anisotropic customisation. This
significantly increases the complexity of microstructure topology optimisation design.

For a considerable period, mesh-based numerical methods such as the finite element method (FEM) and boundary element

method (BEM) have been the mainstream tools for analysing piezoelectric structures. Whilst these methods demonstrate
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maturity in conventional problems, they face significant challenges when handling piezoelectric metamaterials due to the
high-dimensional parameter space and strong multi-field coupling calculations. On one hand, the piezoelectric effect involves
strong bidirectional coupling between stress and electric fields. The disparity in magnitude between physical fields readily
leads to deterioration in the condition number of the stiffness matrix, thereby compromising computational convergence.
On the other hand, the introduction of intricate microstructures—such as triple-periodic minimal surfaces (TPMS) or fractal
structures ' —to pursue extreme performance renders high-fidelity meshing a computational bottleneck. Particularly in
multiscale analysis and topology optimisation scenariosm], computational load increases exponentially with degrees of
freedom, rendering traditional numerical methods inadequate for real-time simulation and rapid iterative design requirements.
In recent years, deep learning techniques have offered novel avenues for alleviating the aforementioned computational
bottlenecks . Data-driven surrogate models have demonstrated application potential in accelerating structural response
prediction and aiding additive manufacturing(AM) He, However, existing purely data-driven models, such as Convolutional
Neural Networks (CNNs), typically lack physical interpretability and do not explicitly incorporate physical governing
equations as constraints. This results in models being highly dependent on high-quality labelled data. In piezoelectric
metamaterial research, acquiring high-fidelity ground truth datasets covering multi-field coupling and complex geometries is
costly and challenging. Furthermore, the absence of embedded physical constraints means predictions from purely data-driven
models cannot guarantee strict adherence to energy conservation or boundary conditions. Consequently, their generalisation
performance beyond the training sample domain (out-of-distribution) is limited, hindering direct application in engineering
design requiring high reliability.

To address these limitations, Raissi et al. proposed the Physical Information Neural Network (PINN), establishing a scientific
machine learning (SciML) framework that integrates physical principles for solving complex partial differential equations
(PDEs) - By embedding the residuals of the partial differential equations governing the physical system as a regularisation
term within the loss function, PINN achieves high-accuracy solutions for multi-physics problems without mesh generation
and relying solely on sparse observational data. This dual ‘data-physics’ driven characteristic confers significant advantages
in handling complex boundary conditions of piezoelectric metamaterials, multi-field coupled inverse problems, and parameter
identiﬁcationm’m, and has been extensively validated for effectively resolving diverse engineering PDE problems“s]. In recent
years, topology optimisation methods based on PINN have also seen progressive development and application[m]. This paper
aims to provide a systematic review of the latest research advances in PINNs for analysing the mechanical behaviour of
piezoelectric metamaterials, multi-physics coupling modelling, and topology-optimised design. The complete framework is
illustrated in Fig. 1.

Figurel: Current status of computational studies on piezoelectric metamaterials within the PINN framework
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To present the research trajectory of this emerging field with logical clarity, the subsequent sections of this paper are
organised as follows: Section 2 elaborates on the physical modelling theory of piezoelectric metamaterials, establishing
the necessity of introducing deep learning by analysing the multiscale computational bottlenecks of traditional methods;
Section 3 systematically constructs the theoretical framework of PINNs, thoroughly comparing their advantages over finite
element methods (FEM) and purely data-driven models; Section 4 focuses on core application strategies and cutting-edge
developments of PINN in performance forward prediction and structural inverse design; Section 5 outlines future research
directions for PINN.

2.Modelling the Mechanical Behaviour of Piezoelectric Metamaterials
The design and application of piezoelectric metamaterials hinge upon a profound understanding of their complex mechanical
behaviour, with the core challenge lying in accurately describing the interaction between multi-physics coupling effects and
multi-scale geometric features. This section aims to establish a systematic physical modelling theoretical framework spanning
from microscopic mechanisms to macroscopic responses. Building upon the derivation of multi-field coupled governing
equations using linear piezoelectric theory and continuum mechanics, alongside the establishment of physical conservation
laws, this framework further elaborates on the representative volume element (RVE)-based equivalent medium theory
and homogenisation methods. This addresses the unique periodic microstructural characteristics of metamaterials, thereby
establishing a theoretical bridge mapping microscopic topological parameters to macroscopic effective material properties.
Concurrently, addressing numerical bottlenecks arising from strong multi-physics coupling and complex geometries, this
work thoroughly examines critical challenges such as ill-posed stiffness matrices and mesh distortion. This aims to establish a
robust theoretical foundation for subsequent efficient analysis and topological optimisation.
2.1 Control Equations for Piezoelectric Dielectrics and Multi-Field Coupling Mechanisms
The macroscopic mechanical response of piezoelectric metamaterials is fundamentally governed by the bidirectional
interaction between elastic and electric fields. This intrinsic electromechanical coupling effect manifests as the reciprocal
processes of mechanical deformation inducing electrical polarisation (direct piezoelectric effect) and external electric fields
exciting mechanical strain (reverse piezoelectric effect), endowing the material with exceptional performance in wave field
manipulation and energy conversion. To quantitatively characterise this intricate dynamic physical process, a comprehensive
mathematical model must be established within the framework of continuum mechanics and linear piezoelectric theory.
Under the assumptions of small deformation and quasi-static electric fields, its physical behaviour is governed by the
combined action of geometric equations, constitutive equations, and equilibrium equations. This yields a closed system of
partial differential equations describing the mechanical behaviour of piezoelectric media .
Consider a piezoelectric continuum occupying spatial region {J = R3, whose boundary is

oQ=T,url,=T,uT, ©)
The displacement and potential are specified at I',,I'; , with natural boundary conditions applied at T’ I I
Based upon the assumptions of a continuous medium, small deformations, and a quasi-static electric field, the geometric
kinematics equations establish a consistent relationship between fundamental field variables and their gradient fields. Within
the Cartesian coordinate system, for a given mechanical displacement vector u, and electric potential scalar ¢, the linear

strain tensor &; and electric field intensity vector E; are respectively defined as:

& :%(uﬁuﬁ) @)
E = _¢,i
The subscript comma denotes the partial derivative with respect to spatial coordinates. The symmetry of &; reflects that rigid-
body rotation does not induce strain, while the negative sign of E, indicates that the electric field direction points from higher
to lower potential.

The electromechanical coupling behaviour of piezoelectric materials is derived from the second-order expansion of the
thermodynamic potential function. To facilitate the independent treatment of strain and electric field variations, G(4,E) is
selected as the fundamental thermodynamic potential, expressed as:
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The respective components correspond to elastic potential energy, electromechanical coupling energy, and dielectric energy.
By taking partial derivatives of this potential function with respect to strain and electric field, the thermodynamic conjugates

can be obtained:

6,6 )
", T OE @

Constitutive equations serve as the link between force fields and electric fields, profoundly revealing the thermodynamic
mechanisms of energy conversion within materials. Based on the above expression utilising Gibbs free energy or electric
enthalpy density functions, linear equations in stress-charge form can precisely express the dependence of the stress tensor o

and electric displacement vector D, upon the independent variables of strain and electric field:

{O-ij =Cuéy — ey Ex
D, = ey, + K, E;

1

©)

This formulation simultaneously describes both the direct and inverse piezoelectric effects, ensuring the system satisfies
energy conservation and the second law of thermodynamics.To systematically derive the control equations, an energy-based
variational principle is introduced. For piezoelectric dynamics, the actual trajectory of the system should maximise the

following functional:

ST -y =0 (6)
Here, the system’s kinetic energy is defined as:
1 .-
T = Ejﬂpuiuidﬁ (7)
Internal Energy (Electrical-Mechanical Coupling):
U= G, E)dQ ®)
External Forces and Electric Potential Energy:
W= fudQ+ J.rztl.ul.dl“ +| a9 )
Total potential energy:
n=u-w (10)

The internal energy is obtained by integrating the Gibbs free energy density over the entire domain, whilst the external work
includes that performed by physical forces, surface forces, and surface charges. This constitutes a complete potential energy
functional, providing a unified starting point for subsequent variational derivations.

By applying independent variational formulations to the displacement field and potential field respectively, and incorporating
the variational relationship between strain and electric field, the variational representation of the energy functional can be
expressed as an integral with respect to sy and 54 . Applying Gauss’s theorem to the spatial integral terms transfers the first-
order derivatives from the variational function to the stress and electric displacement terms, thereby naturally introducing the
corresponding boundary terms.

Displacement Variational:
oT = _pii,5ii,dQ
. (11)
SU = [ (0,02, ~ DSE,)dQ

Use: 1
58ij = 5(5%,], + 5uj’i), OE, =—0¢, (12)
Integration by parts in space (Gauss’s theorem).

Stress term:

is]

[ .0,0u,d0=-] o, oud0+ jn?,.au,.dr (13)
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Electrical displacement term:
[ ,DopdQ=~[ D, opdQ+ Irq§6¢dF (14)
Ultimately yielding the weak form of the piezoelectric dynamics problem:

[ piioudQ+| o,06,d0=] foudQ+| [Bu,dr .
[ DoEdQ=] 459

The ultimate equilibrium state of the system is governed by physical conservation laws. For dynamical problems

incorporating inertial effects, the mechanical field must satisfy the law of conservation of momentum (namely Newton’s

Second Law), whilst the electric field, under the assumption of an insulating medium, must satisfy the law of conservation of

charge (namely Gauss’s law from Maxwell’s equations). Excluding physical forces and internal free charges, the governing

equations may be expressed as:

Oyt fi=p

16
iiiDi,i =0 (1o

Here, p denotes the material density, while i, represents the second derivative of displacement with respect to time.
The aforementioned governing equations, coupled with the constitutive relationship and supplemented by corresponding
mechanical boundary conditions (such as Dirichlet or Neumann boundaries) and electrical boundary conditions, constitute a
complete boundary value problem for solving the wave dynamics and vibration characteristics of piezoelectric metamaterials.

In FEM, introduce interpolation:

uxNd, ¢=~N, a7)
Obtain a semi-discrete system:
M o0d] [K, K,]d]| [f
[ 0 JLJ ' [Km _KALJ B LJ 1o
Where:
K, =| B'¢'B,dQ (19)

2.2 Equivalent Medium Theory

he macroscopic properties of piezoelectric metamaterials are not solely determined by the intrinsic characteristics of the
host material, but are primarily governed by the topological structure and periodic arrangement of their microscopic unit
cells. This artificially engineered heterogeneity enables metamaterials to exhibit extraordinary electromechanical coupling
properties at the macroscale that are difficult to achieve in natural materials . To efficiently analyse extensive array
structures at the engineering scale, the theory of equivalent media must be employed, approximating the microscopic non-
uniform periodic lattice as a macroscopically homogeneous continuous medium " The following sections introduce this
approach through the definition of equivalent mechanical properties and the homogenisation principle.

Equivalent mechanical properties denote a set of averaged constitutive parameters capable of reproducing the physical
response of microstructures at the macroscopic scale. For piezoelectric metamaterials, this process is commonly termed
“homogenisation”. Its theoretical foundation is established within a multiscale analysis framework and has been extensively
applied to periodic composite materials’ .

The Representative Volume Element (RVE)-based volume averaging method combined with finite element analysis (RVE/
FEM) is the most commonly employed homogenisation technique in engineering. It directly solves the unit cell response
by applying periodic boundary conditions, offering advantages of intuitiveness and high accuracy[24]. The macroscopic
mean stress &ij, mean strain £ij, mean electric displacement Ei, and mean electric field El may be defined by integrating

microscopic field quantities over the unit cell volume J/ :

_ 1 _ 1

o —;jyal.de s & —;Ivgde (20)
By applying periodic boundary conditions (PBCs) at the cell boundaries and solving the boundary value problem, an
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equivalent constitutive relationship describing the macroscopic behaviour can be obtained:

— _ eff eff
0; = Cijk/ S~ € E,

D = ele, +x"E, @l
Among these, , and denote the equivalent elastic stiffness tensor, equivalent piezoelectric coupling tensor, and equivalent
dielectric tensor respectively. These parameters constitute core metrics in metamaterial design—for instance, through
microstructural engineering, one may achieve negative equivalent parameters unattainable in nature or significantly enhanced
electromechanical coupling coefficients .
As computational complexity increases, so too does computational cost. To address this challenge, academia has developed
multiple homogenisation strategies. Among these, Asymptotic Homogenisation (AH) offers the most rigorous mathematical
foundation based on two-scale asymptotic expansion theory, capable of capturing higher-order correction terms. However,
its derivation is cumbersome and struggles with extremely complex topologiesm’m. In recent years, data-driven approaches
have advanced rapidly, giving rise to new paradigms based on PINN and deep homogenisation frameworks. Such approaches
achieve mesh-free, rapid prediction by learning mappings from microscopic structures to macroscopic equivalent properties,
proving particularly suitable for complex topologies and inverse design S They provide efficient tools for optimising
piezoelectric metamaterials and conducting multiphysics coupling analyses.
2.3 Multi-scale Structures and Computational Challenges
Piezoelectric metamaterials achieve customisation of macroscopic electromechanical properties through the periodic
arrangement of microscopic topologies. While this cross-scale synergistic characteristic endows the material with
extraordinary physical properties, it also poses significant challenges to conventional numerical computations. On the one
hand, high-fidelity characterisation of microscopic geometric details leads to an exponential increase in computational
degrees of freedom (DoFs) across the entire system. On the other hand, the inherent strong electromechanical coupling
readily induces severe numerical ill-conditioning in the stiffness matrix. Consequently, overcoming computational scale
explosion and convergence issues while maintaining physical fidelity has become the core bottleneck in current analysis and
design.
2.3.1 Unusual physical properties arising from periodic structures
Periodic arrangements represent more than mere geometric repetitions of microscopic units. Wave dynamics analysis grounded
in the Bloch-Floquet theorem demonstrates that such ordered structures can induce a series of singular dynamic responses.
Firstly, these structures can form acoustic bandgaps, wherein elastic wave propagation is prohibited within specific frequency
ranges. This property holds critical significance for broadband active vibration suppression in aerospace structures )
Secondly, through topological designs such as re-entrant or rotating rigid bodies, metamaterials exhibit negative Poisson’s
ratio effects, manifesting lateral expansion under tensile stress Y Research confirms that this counterintuitive kinematic
behaviour significantly alters internal stress distributions, amplifying local effective strain on micro-piezoelectric elements by
several orders of magnitud, thereby substantially enhancing macroscopic electromechanical conversion efficiency and energy
harvesting power -
However, these complex microstructures are often accompanied by the phenomenon of local field enhancement, where
the stress or electric field is highly concentrated at the interfaces of multiphase materials, forming “hotspots”. Although
previous studies have effectively alleviated the computational bottleneck and accuracy contradiction in piezoelectric fracture
simulation by traditional finite elements through the adaptive isogeometric analysis framework based on PHT splines and
other optimization methodsm], which improved the local mesh refinement technique (Fig2(a)), they are still fundamentally
limited by the grid-based discretization solution path. When dealing with tasks such as real-time prediction, reverse design,
or parameter inversion, they still face high costs of stiffness matrix reassembly and repetitive iterations. Such drastic gradient
changes require numerical methods to have extremely high spatial resolution; otherwise, it is difficult to capture the true
physical response.

2.3.2 Discretisation Bottlenecks in Complex Microstructure Topologies
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To achieve high specific strength and multifunctional integrated performance, the unit cell configurations of modern
piezoelectric metamaterials have evolved from simple truss structures to highly complex biomimetic continuous topologies.
Typical examples include Triple-Period Minimal Surfaces (TPMS) and Hierarchical/Fractal Structures . Such structures are
often described by implicit level-set functions, featuring smooth, continuous surfaces and excellent topological properties.
For these complex configurations, Wang et al. proposed a hybrid optimization framework integrating machine learning (ML)
and evolutionary algorithms (EA) [35], demonstrating outstanding performance in the inverse optimization of biomimetic
stress-strain curves for fractal metamaterials (Fig. 2(b)).

Despite the excellent mechanical potential of the aforementioned geometric design, its complex continuous topological
features pose significant challenges for discrete numerical simulations. When employing traditional finite FEM, capturing
surface curvature features with precision necessitates the generation of extremely dense unstructured tetrahedral meshes.
Upon scaling up single cells to macroscopic arrays, mesh sizes grow exponentially into the tens of millions, frequently
triggering out-of-memory errors * and resulting in extremely costly simulations and convergence issues (Fig. 2(c)). More
critically, mesh distortion at complex surfaces readily induces singular Jacobian matrices and computational divergence,
rendering high-fidelity topology optimization based on meshes impractical for engineering applications .

2.3.3 Multiphysics Strongly Coupled Stiffness Pathology

The analysis of mechanical behaviour in piezoelectric metamaterials confronts severe numerical stability challenges arising
from strong multiphysics coupling. Unlike purely elastic problems involving single fields, piezoelectric analysis necessitates
the coupled solution of momentum conservation equations and Maxwell’s equations within a unified framework. However,
these two physical fields exhibit a vast inherent disparity in energy and parameter scales: the elastic stiffness matrix typically
reaches magnitudes of 10° ~ 10" Pa, whereas the dielectric constant is merely 10 ~ 10" F/m. This parameter difference
spanning nearly 20 orders of magnitude directly results in the global system stiffness matrix, after discretisation, exhibiting
extreme ill-conditioning, where the matrix condition number approaches infinity " In traditional finite element method (FEM)
analysis, such extremely poor condition numbers not only significantly amplify truncation errors in floating-point operations,
causing conventional linear solvers to stagnate, but also induce severe volume locking or shear locking phenomena [39],
necessitating supplementary optimization strategies (Fig. 2(d)).

Addressing this long-standing challenge, subsequent research has converged on a dual-track approach combining algorithmic
reconstruction with data-driven methods. On one hand, discrete techniques based on smoothing or higher-order geometry
have been shown to inherently suppress numerical locking caused by strong coupling at the mesh topology level (as
illustrated in Fig. 2(e)), significantly reducing reliance on complex preprocessing techniques "1 On the other hand, with
the emergence of PINNS, researchers began employing neural networks to solve piezoelectric partial differential equations.
However, they also discovered that the aforementioned multiscale coefficient variations could lead to severe gradient
singularities during optimization. To address this, recent work introduced a dimensionless normalization and adaptive loss
weighting strategy [42], successfully achieving high-accuracy solutions for high-contrast multiphysics problems (Fig. 2(f))
without explicitly assembling massive stiffness matrices.

Figure 2: Addressing multiscale structures and numerical computation challenges. (a) An adaptive isogeometric analysis
framework for PHT splines, alongside other optimisation methods, effectively mitigates computational bottlenecks and accuracy
trade-offs in traditional finite element simulations of piezoelectric fracture by enhancing local mesh refinement techniques
B3 (b) A hybrid optimisation framework combining ML and EA demonstrates superior performance compared to traditional
finite elements in inverse optimisation of biomimetic stress-strain curves for fractal metamaterials”™. (c) A single multilayer
perceptron model architecture within deep ensemble models resolves the extremely costly simulations and non-convergence
issues associated with self-contact and large deformations”. (d) Experiment-driven Bayesian optimisation circumvents
simulation bottlenecks for large deformations in complex structures, rigorously validated through physical experiments,
analytical solution comparisons, or high-fidelity simulation data matching””. (e) Capability to resolve local accuracy loss issues
caused by ‘multiphysics strongly coupled ill-posed problems’ through isogeometric analysis and smoothed finite elements””. (f)

PINN resolves numerically ill-posed challenges arising from multi-field coupling, achieving high-precision solutions'”.
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3. Overview and Comparative Analysis of the PINN Method

3.1 An Overview of the Fundamental Theory of PINN

With the introduction of the Physical-based Neural Network (PINN) by Raissi, Karniadakis et al.[lz’m], a mesh-free
computational framework integrating physical mechanisms was established by explicitly embedding physical governing
equations into the deep learning optimization process (Fig. 3(c)). Unlike traditional purely data-driven approaches, PINNs
directly map spatial and temporal coordinates to physical field variables. They utilise automatic differentiation (AD) to
precisely compute derivative information, constructing loss functions with PDE residuals, boundary conditions, and initial
conditions as regularisation constraints. This mechanism approximates continuous physical fields without requiring mesh
discretisation, thereby supporting both forward multi-physics simulation and inverse parameter identification based on sparse
observations within a unified mathematical framework.

Within the PINN framework, deep neural networks (DNNs) serve as generalised function approximators for the physical
field under investigation. For spatio-temporally dependent physical problems, the network constructs a nonlinear mapping
N : x> u from spatio-temporal coordinates x = (x, y,z,f) to physical state variables (such as displacement u or
potential ¢ ).

Unlike early universal approximation theorems, modern deep learning theory focuses more on the expressive advantages

43 . . . .
brought by “depth.” Yarotsky’s[ " error bound theory demonstrates that for physical functions with sufficient smoothness,
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deep networks can achieve equivalent approximation accuracy with far fewer parameters than shallow networks, explaining
their efficiency in handling high-dimensional physical problems. Furthermore, to overcome the limitation of traditional
piecewise linear activation functions like Rectified Linear Unit (ReLU)—whose second derivatives are zero, rendering them
unsuitable for describing physical processes involving higher-order derivatives—PINNs typically employ smooth nonlinear
activation functions such as the hyperbolic tangent function' "~ This not only ensures the continuity of physical residuals
but also effectively mitigates spectral bias in high-frequency problems, providing a mathematical foundation for simulating
complex force-electric coupling fields.

Although DNNs possess formidable approximation capabilities, the network itself remains physically agnostic. At this
juncture, it becomes necessary to introduce PDE that comply with physical laws to physically drive the DNN, thereby

constraining and guiding its behaviour. For general nonlinear PDE systems:
ou
]:(u)=5+./\/'[u]—f(x,t)=0 (22)

The key technology distinguishing it from traditional FEM lies in AD. PINN abandons mesh-based finite difference
approximations. Instead, it utilises computational graphs and the chain rule to compute arbitrary-order partial derivatives of
network outputs with respect to input coordinates directly at machine precision. This property confers a genuinely mesh-free
nature upon PINN: it requires no laborious mesh partitioning for complex geometries such as TPMS, instead establishing
physical constraints through random sampling of configuration points within the computational domain. Shin et al. o
theoretically demonstrated that under certain conditions, this sequence based on continuous functions converges to the strong
solutions of linear elliptic and parabolic PDEs, establishing the theoretical completeness of PINN as a rigorous numerical
solver. The precise and efficient computational results obtained through the AD method lay the groundwork for subsequent
correction of DNNs driven by loss functions.
The training process of PINN involves solving a multi-objective optimisation problem, where the total loss function is
typically composed of a data matching term, a boundary condition term, and a weighted physical residual term:

L(0) = Wy Lasia + WopeLope T WacLc (23)
Where, L Jae - Dta matching term, used to assimilate sparse experimental observations or high-fidelity simulation solutions,
formulated as mean squared error. L,.: Boundary/initial condition term, enforcing the network to satisfy Dirichlet or
Neumann boundary constraints (soft constraints). £, : Computed physical residual term, which constitutes the core
of PINN. The network continuously updates its parameters via backpropagation algorithms until the physical residual
approaches zero, thereby ensuring the DNN’s output satisfies the physical constraints of the PDE.
3.2 Comparison of PINN with Traditional Methods
This section aims to dissect the fundamental differences in physical representation logic between PINNs and traditional FEM
alongside purely data-driven models (such as CNNs). FEM relies on geometric discretisation, with accuracy constrained
by mesh quality; purely data-driven models focus on statistical mapping, exhibiting strong data dependency and lacking
physical induction bias. In contrast, PINN achieves a profound integration of physical mechanisms and data observations
by embedding governing equations within the loss function. The following sections elucidate PINN’s unique computational
advantages across three dimensions: geometric representation scalability, forward-inverse problem solving paradigms, and
physical consistency. These enable PINN to overcome mesh distortion, break through the small-sample bottleneck, and
achieve multi-field coupled parameter inversion.
3.2.1 Scalability of Geometric Discretisation Constraints and High-Dimensional Computation
As a standard tool in structural mechanics, the accuracy of FEM solutions is strictly constrained by the quality of mesh
discretisation. While it performs reliably in two-dimensional plane problems, FEM faces severe mesh generation bottlenecks
when handling complex three-dimensional topologies. Firstly, computational costs become disproportionate: to approximate
smooth surfaces, the reconstruction (re-meshing) of unstructured meshes frequently consumes over 70% of the entire
simulation cycle. Secondly, numerical stability risks arise, as intricate geometric features readily induce mesh distortion,

subsequently triggering singular Jacobian matrices and computational divergence.
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Traditional CNN models are constrained by voxelization strategies, facing computational barriers and geometric scaling
effects. To overcome this bottleneck, Ren et al. 1ol and Sharma et al. t shifted toward more efficient low-dimensional
feature-driven approaches. Utilizing explicit parameter mapping (PSMNN) and graph-based representations respectively,
they successfully achieved high-fidelity reconstruction of complex metamaterials within low-dimensional spaces (Fig.
3(a,b)). However, these approaches remain fundamentally data-driven. While they address the efficiency issues of geometric
characterization, model training still heavily relies on massive finite element simulation labels, failing to overcome the
fundamental constraint of high data acquisition costs.
By contrast, the breakthrough of PINN lies in its adoption of a continuous sampling mechanism based on coordinate
points (x,y,z,t). As a mesh-free approach, the network size of PINN scales linearly with input dimensions rather than
exponentially. This inherently enables PINN to circumvent geometric errors and cubic computational bottlenecks associated
with mesh partitioning when handling three-dimensional solid piezoelectric metamaterials. Consequently, it achieves infinite-
resolution approximations of physical fields across continuous domains at comparatively low computational expense. This
characteristic naturally accommodates the implicit representation of complex structures such as TPMS[45], whilst loss function
weighting facilitates multi-physics field balancing el
3.2.2 The Paradigm Shift in Solving Positive and Negative Problems
In the engineering applications of metamaterial design, material parameter identification and topology optimisation are
often more critical than forward prediction. In this task, the solution paradigms of the three approaches exhibit fundamental
differences.
Traditional FEM solutions to inverse problems inherently constitute a “black-box” optimisation process. Due to the inability
to directly compute derivatives, an outer optimisation loop is typically required, involving repeated invocations of the forward
solver and updates to the geometric mesh. Each parameter iteration necessitates a complete finite element simulation, and this
high-frequency re-analysis leads to an exponential explosion in computational cost during multi-parameter space searches.
Although CNNs exhibit extremely rapid inference speeds, they face severe data dependency and lack of generalisation
capability in inverse problems: training a high-precision inversion network requires vast amounts of ‘geometry-response’
labelled data, whose generation often still relies on costly FEM simulations due to offline data generation bottlenecks.
Simultaneously, purely data-driven models merely provide statistical fits to physical laws, lacking physical constraints.
Should the parameters to be inverted fall outside the distribution range of the training set, the model’s predictive capability
deteriorates sharply, with no guarantee that results satisfy fundamental physical conservation laws.
PINN proposes a transformative solution paradigm: within this framework, unknown material or geometric parameters may
be treated as trainable variables, updated concurrently with network weights during the same backpropagation iteration.
This enables PINN to simultaneously predict forward physical fields and identify reverse constitutive parameters at the cost
of a single training run. This physically driven self-supervised mechanism not only eliminates reliance on external labelled
data but also significantly accelerates the iterative cycle of metamaterial design. Table 1 provides a comparative analysis of
traditional finite element methods, purely data-driven neural networks, and PINN from multiple perspectives.

Table 1: Comparative analysis of FEM, CNN and PINN frameworks

Feature Finite Element Method (FEM) Pure Data-Driven DL (CNN) Physics-Informed NN (PINN)
. . Mesh-based (Dependent on mesh | Grid/Voxel-based (Limited by . Mesh-free .
Discretization . . . . . . (Continuous coordinate sampling;
quality; prone to distortion) resolution; cubic complexity) P .
infinite resolution)
Physics Enforce- . Intr11.151? . Absent . Constraint-based (PDE residuals
(Variational principles/Weak (Statistical correlation only; . .
ment ) " embedded in loss function)
form) Black-box”)
Data Require Minimal High Minimal
d (BCs & constitutive parameters | (Requires massive labeled data- | (Physics-driven; capable of zero-shot
ment .
only) sets from FEM/Exp) learning)
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Feature Finite Element Method (FEM) Pure Data-Driven DL (CNN) Physics-Informed NN (PINN)
Exponential Cubic (O(N 3) ) (Restricted by Linear
Scalability (Suffers from “Curse of Dimen- voxelizati- (Scales linearly with input dimen-
sionality”) on scaling barrier) sion)

Inverse Problem

Iterative Re-analysis
(High cost due to re-meshing

Fast Inference
(Poor extrapolation beyond

Unified Optimization (Parameters
updated via back-propagation)

loops) training data)
High Low Hich
Generalization (Within continuum mechanics (Poor Out-of Distributi- £ .
. (Guaranteed by physical laws)
assumptions) on performance)

3.3 Model Improvement and Evolution of PINN
Despite demonstrating considerable potential in solving general partial differential equations, standard PINNs often exhibit
convergence stagnation or insufficient accuracy when confronted with the multiscale wave propagation, strongly coupled
stiffness singularities, and complex periodic topologies characteristic of piezoelectric metamaterials. To address these
challenges, the academic community has proposed a series of improvement strategies encompassing feature embedding, loss
weighting, regional decomposition, and operator learning.
Regarding the high-frequency fluctuations and bandgap characteristics commonly observed in the dynamic analysis of
piezoelectric metamaterials, standard multi-layer perceptrons (MLPs) exhibit significant spectral bias, wherein the network
tends to prioritise fitting low-frequency components while neglecting high-frequency details. To overcome this limitation,
Tancik et al. [47] introduced Fourier Feature Embeddings. By mapping input coordinates to a high-dimensional sinusoidal
feature space, this approach substantially enhances the network’s ability to resolve stress concentrations at microstructural
edges and propagate short-wavelength phenomena. Building upon this foundation, the SIREN architecture employs periodic
activation functions to further ensure computational accuracy for higher-order derivatives -
To address the parameter disparity and stiffness ill-posedness spanning up to 20 orders of magnitude between force-electric
coupling fields, adaptive weighting mechanisms have been widely adopted I Unlike traditional methods involving manual
adjustment of fixed weights, this mechanism dynamically balances the residual contributions from the momentum equation
and Maxwell’s equations during training by utilising gradient statistical information. This effectively prevents numerically
dominant mechanical terms from dictating the optimisation direction, thereby ensuring synchronous convergence across
multiple physical fields.
When confronted with highly complex bionic topological structures such as TPMS, a single network struggles to capture
global geometric features. Extended PINN and conservative PINN introduce the concept of domain decomposition [50],
partitioning complex macroscopic arrays into multiple subdomains. By employing several sub-neural networks to solve
problems in parallel and exchanging information through interface conditions, this approach not only reduces training
complexity but also inherently aligns with the demands of high-performance parallel computing.
To overcome the efficiency bottleneck of PINNs’ one-time training and support real-time inverse design, research focus
is progressively shifting towards neural operator learning. Novel architectures such as DeepONet[Sl] and Fourier Neural
Operators[sz] no longer confine themselves to solving equations for single operating conditions, but instead strive to learn
nonlinear operator mappings from microstructural parameters to macroscopic response fields. Once trained, such models
enable millisecond-scale real-time inference, providing a revolutionary tool for rapid topological optimisation and parameter
scanning of piezoelectric metamaterials. Table 2 summarises PINN advancements in metamaterial applications.

Table 2: Development of PINN

Year Research Content Key Technical Iterations Key Progress
Physics-informed neural net- Fundamental PINN frame- | First determination of the effective dielectric constant for
2020 | works for inverse problems in work, meshless inverse finite-size scattering systems, surpassing effective medi-
nano-optics and metamaterials™”’ scattering um theory (Fig. 3(d))

11



Journal of Advances in Engineering and Technology Vol. 3 No. 1 (2026)

Year Research Content Key Technical Iterations Key Progress
Recent advances in metasurface |PINN combined with topolo-| Emphasising physical accuracy and computational effi-
2023 . . [54] L . L .
design with PINNs gy optimisation ciency to enhance the versatility of reverse engineering
PINN for for structural topology A ms:sh-free topology opti- | The improved DEMJ"INN not oply engblgs predlctlon.
2023 optimization’®” misation framework has been |but also replaces sensitivity analysis, achieving automatic
P established. structural evolution (Fig. 3(e))
2024 Dynamically configured PINN | Dynamic Subnet Configura- | Enhance optimization efficiency, replacing finite element
for topology optimization'® tion and Active Sampling analysis (Fig. 3(f))
. Pre-training + Inverse Design .
PINNSs for topological metama- . . Low-frequency broadband performance, flexible wave-
2025 . . 56] Model + Physically Equiva- . . . . .
ter- ial design . guide manipulation, sixfold expansion of bandgap
lent Integration
2005 LT-PINN: Lagrangian topolo- |Lagrange Boundary Focusing| Processing multi-scale hierarchies to enhance the accura-

gy-conscious PINNP7 + Hard Constraint cy of complex geometries (Fig. 3(g))

Figure 3: Data-Driven frameworks and the advancement of PINNs. (a) Data-driven framework based on parallel separated
multi-input neural networks (PSMNN) ' (b) Machine learning-based optimisation design of piezoelectric metamaterials™".
(c) Foundational model framework of PINN"'? . (d) Scattering data framework established via PINN framework, enabling
novel dielectric devices with significantly reduced scattering performance (e) Schematic of the CPINNTO architecture, where
the output density of S-PINN undergoes forward propagation via the DEM-PINN loss"” .(f) Design of advanced piezoelectric
metamaterials through integrated topology and shape optimisation'"” . (g) Lagrangian Topology-Aware PINN (LT-PINN)

framework for boundary-directed engineering optimisation®”.
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4. Applications of PINN in Metamaterials and Multiphysics
This section broadens the perspective from pure algorithmic theory to the cutting edge of complex engineering applications.

We systematically review the latest developments in PINNs for handling strong multiphysics coupling mechanisms,
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constructing parametric surrogate models for metamaterials, and driving complex microstructure inverse topology
optimisation. The emphasis lies in analysing how PINNs overcome the limitations of traditional FEM concerning mesh
dependency and multi-field interface interpolation. We further explore the theoretical challenges and technical pathways
involved in migrating these generalised multiphysics solution strategies to the domain of piezoelectric metamaterials.

4.1 Method Transfer in Multiphysics Coupling Scenarios

Prior to the extensive exploration of force-electric coupling in piezoelectric effects by PINN, this methodology had already
demonstrated its unique advantages in solving classical multiphysics problems such as thermal-mechanical and fluid-structure
interactions. However, this represents not a simple superposition of physical equations, but rather a fundamental shift in the
underlying numerical computational paradigm.

In the classical thermo-mechanical coupling problem, the heterogeneity of physical fields already poses significant
challenges. When an electric field is introduced to form a thermo-electro-mechanical three-field coupling, the complexity

59 . . .
]recently demonstrated in their study of functionally

of the problem increases exponentially. For instance, Zhang et al. o
graded piezoelectric plates that the nonlinear interaction between the temperature field and a strong electric field can induce
highly complex dynamic responses. When addressing such multi-physics systems, traditional PINNs are highly susceptible
to “Gradient Pathology” in multi-objective optimization due to the vastly different decay scales and energy levels typically
exhibited by temperature, stress, and electric potential fields. To address this common challenge, recent work successfully
balanced differences among control equations in transient 3D problems and large-scale ratio structures by introducing
adaptive weighting strategies and mixed variable formulations [60], effectively resolving network convergence stagnation
caused by stiffness mismatch (Fig. 4(b)).

In the more complex domain of fluid-structure interaction, PINN demonstrates flexibility surpassing traditional mesh-based
methods. A domain decomposition framework combined with the Immersed Boundary Method has been proven capable
of accurately simulating convective heat transfer and fluid stress transfer at moving interfaces “ Unlike traditional FEM,
which is often constrained by cumbersome and error-prone data interpolation mapping between heterogeneous physical fields
(e.g., fluid and solid), PINN’s continuous domain coordinate sampling eliminates this limitation entirely. As demonstrated
by Rezaei et al. [62], by introducing hybrid variable formulations, PINN can directly construct and solve coupled equation
systems on the same set of spatial grid points, effectively circumventing mesh compatibility issues at interfaces. This unique
advantage enables the network to simultaneously approximate velocity, pressure, displacement, and potential fields within a
unified coordinate system, achieving high-precision multiphysics coupling solutions without requiring mesh mapping.

This “meshless, unified coordinate system” feature holds revolutionary significance for piezoelectric metamaterial research.
In piezoelectric composites, the electric field concentration effect typically occurs within an extremely narrow region at
the two-phase interface, requiring extremely high-density mesh refinement in traditional FEM. PINNs, however, employ
residual-driven adaptive sampling to automatically identify regions of rapid change in the electric-force coupling gradient.
This approach eliminates meshing compatibility issues at multi-field interfaces, offering a novel strategy for high-fidelity

. . . . . . . . . [63]
simulation of interfacial polarization behavior in piezoelectric microstructures

4.2 Forward prediction of metamaterial mechanical behaviour

In solving forward problems, PINN is increasingly becoming the preferred tool for constructing efficient parametric surrogate
models for metamaterials. Traditional data-driven deep learning models rely on massive amounts of FEM simulation data
as labels, representing “black-box™ interpolation. In contrast, the PINN approach directly embeds control equations into
the loss function, eliminating the need to pre-generate large discrete datasets. In the field of mechanical metamaterials,
existing research has leveraged this mechanism to handle complex linear elastic and elastoplastic constitutive relations o,
Furthermore, it has established nonlinear mappings between microscopic lattice configurations and macroscopic dispersion
relations (as shown in Fig. 4(c)), enabling sub-second predictions of band structures eel

Extending this paradigm to the field of piezoelectric metamaterials holds immense engineering value but also presents
formidable computational challenges due to the high-dimensional parameter space. Unlike purely elastic media, piezoelectric

response involves not only the intrinsic coupling of fourth-order elastic tensors and third-order piezoelectric tensors but is
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also significantly modulated by the impedance characteristics of external shunt circuits. Under extreme operating conditions,
this predictive complexity is further amplified. As demonstrated by Zhang et al. “*in their recent studies on piezoelectric
shells, flexible cables, and membrane structures, neglecting nonlinear constitutive relationships under the combined effects
of strong electric fields and geometric nonlinearity leads to substantial errors in dynamic response prediction. Maintaining
accuracy necessitates the use of computationally expensive numerical techniques. This scenario of strong nonlinear coupling,
where traditional computational costs surge dramatically, powerfully underscores the urgency of developing efficient PINN-
based surrogate models to achieve rapid, high-fidelity predictions.

For such prediction challenges involving complex circuits and multi-field coupling, recent breakthroughs have demonstrated
promising solutions. For instance, by constructing a hybrid PINN architecture incorporating circuit topology constraints,
researchers successfully integrated geometric parameters, material polarization directions, and circuit loads as network inputs,
achieving direct mapping to macroscopic voltage outputs or impedance spectra[Gg]. Similarly, in more intricate piezoelectric
semiconductor studies, as illustrated in Fig. 4(a), PINN has also proven effective in tackling the nonlinear prediction
challenge of the thermo-deformation-polarization-carrier (TDPC) quadruple field coupling [13], further demonstrating its
exceptional generalization capability within high-dimensional multi-physics parameter spaces.

4.3 Reverse Engineering and Topology Optimisation

Reverse design, as the core approach for achieving on-demand customization of metamaterials, has long been constrained by
the high computational cost of forward solutions and the difficulty in obtaining gradients. Unlike traditional Solid Isotropic
Material Penalty (SIMP) or Level Set Method approaches, PINN-driven topology optimization introduces a Neural Implicit
Representation mechanism. This eliminates direct dependence on discrete mesh cell density through fully connected function
approximation. Within this framework, geometric evolution is reformulated as an iterative update of neural network weights.
This parameterization fully leverages automatic differentiation, effectively circumventing the cumbersome sensitivity analysis
inherent in traditional adjoint methods. This “meshless” or “weakly meshed” characteristic enables PINNs to drive geometric
configurations to evolve autonomously within a continuous design space while satisfying control equations, thereby
pioneering a novel mathematical solution pathway for structural optimization eel

In the field of piezoelectric metamaterials, PINN demonstrates exceptional advantages, primarily manifested in its capability
to solve inverse problems under multi-physics coupling constraints. Due to the bidirectional strong coupling between force
and electric fields in the piezoelectric effect, traditional optimization methods often get stuck at local optima when pursuing
maximization of piezoelectric coupling coefficients or sensing sensitivity in specific directions, primarily due to multi-
objective conflicts and the enormous computational demands of the Jacobian matrix I n contrast, PINNs can directly
embed complex force-electric coupling equations as soft constraints within the loss function, enabling the network to
inherently satisfy physical conservation laws while seeking optimal microstructure parameters. Although direct PINN-based
topology optimization for piezoelectric metamaterial microstructures remains exploratory, pioneering work has demonstrated
its immense potential for handling complex geometries e Particularly for microstructures like TPMS or hierarchical
structures—which exhibit outstanding piezoelectric-mechanical properties but possess complex geometries—PINN holds
promise to overcome computational barriers of traditional numerical methods. It enables direct inverse derivation of optimal
topologies based on target piezoelectric responses (as shown in Fig. 4(d)), providing novel mathematical tools and theoretical
foundations for designing next-generation smart metamaterials with breakthrough performance metrics .

Figure 4: Applications of PINNs in metamaterials and multi-physics fields. (a) The high agreement between the DDPINNs-
TD model based on three-dimensional theory and the COMSOL structure demonstrates its reliability under complex multi-
field coupling!”. (b) Investigation of thermal-mechanical coupling through network architecture and loss functions tailored
for multi-physics problems, integrating data and physical models with transfer learning-based input and loss functions™™.
(c) Inverse design outcomes under diverse objectives demonstrated exceptional accuracy in predicting dispersion bandgaps,
robustly validating its superior performance in metamaterial design®”. (d) A deep learning-based inverse design framework

offers a promising and viable approach for designing composite TPMS structures’’".
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Conclusion

This paper provides a systematic review of the latest research advances in PINNs for analysing the mechanical behaviour
of piezoelectric metamaterials, multi-physics coupling modelling, and topology-optimised design. By thoroughly analysing
the computational bottlenecks of traditional numerical methods (such as FEM) when handling complex microstructures,
alongside the generalisation limitations of purely data-driven deep learning models, we demonstrate the unique advantages of
PINN as a SciML framework that integrates physical principles. This framework proves particularly effective in addressing
high-dimensional, multi-field coupling, and inverse problems. Through a comprehensive review of existing literature, the
principal conclusions and perspectives drawn in this paper are summarised as follows:

(1)Mesh-free properties overcome geometric complexity constraints: Unlike traditional finite element methods reliant on
high-fidelity mesh partitioning, PINN employs a mesh-free solution strategy based on coordinate points. This characteristic
entirely eliminates computational burdens arising from mesh distortion and reconstruction when handling complex topologies
common in piezoelectric metamaterials, thereby providing a benchmark for multiphysics simulations under extreme
geometric configurations.

(2)The physically embedded mechanism ensures prediction reliability: PINN successfully overcomes the issues of
interpretability and physical inconsistency faced by purely data-driven models by explicitly embedding piezoelectric
constitutive equations, geometric equations, and boundary conditions as regularisation terms within the loss function.
Even under sparse or unlabelled data conditions, PINN ensures predictions strictly adhere to energy conservation and
thermodynamic laws, significantly enhancing the model’s generalisation capability.

(3)The inherent advantages of inverse problem solving and parameter identification: In the inverse design of piezoelectric
metamaterials, PINN demonstrates superior robustness compared to traditional gradient-based optimisation algorithms. It
enables the simultaneous optimisation of unknown material parameters or damage fields as trainable variables alongside
network weights, thereby accurately identifying anisotropic parameters and microstructural defects within noisy experimental

data. This achieves integrated solution for both direct and inverse problems.
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(4)A marked improvement in topology optimisation efficiency: Integrating PINNs into the topology optimisation loop to
construct physics-based surrogate models effectively resolves the issues of costly Jacobian matrix computations and slow
iterative convergence inherent in traditional methods. This approach not only accelerates multi-objective optimisation
processes but also provides real-time gradient information for designing metamaterials with specific bandgap characteristics
or maximised electromechanical coupling coefficients.

In summary, the PINN framework effectively balances computational efficiency and physical fidelity by integrating
physical mechanisms with data-driven approaches, thereby establishing its leading position in the analysis of piezoelectric
metamaterials. To bridge the gap between theoretical modelling and engineering implementation, future research should focus
on developing adaptive weighting strategies to overcome optimisation pathologies arising from multi-field coupling, whilst
leveraging neural operators to address real-time inference bottlenecks in large-scale systems. With breakthroughs in these key
technologies, this methodology holds promise to evolve into a robust computational strategy for tackling complex coupled

problems, providing core theoretical support for the precise design of next-generation high-end intelligent equipment.
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