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Abstract: With rapid urbanization and increasing motorization, bike-sharing systems have emerged as sustainable solutions 
for urban “last-mile” connectivity. However, existing demand forecasting approaches face a critical trade-off  between pre-
dictive accuracy and operational interpretability, limiting their practical deployment in municipal deci-sion-making contexts 
where both reliable predictions and transparent insights are essen-tial. The study proposes MADENet, a novel neural architec-
ture that systematically ad-dresses this accuracy-interpretability challenge. The framework integrates three key inno-vations: 
multi-head attention mechanisms to dynamically capture cross-regional demand dependencies and temporal periodicity 
patterns; adaptive dropout with early-stopping regularization to mitigate overfitting in high-dimensional spatio-temporal 
scenarios; and multilayer perceptron components to model complex nonlinear interactions between het-erogeneous external 
factors and urban mobility patterns.Experimental evaluation demon-strates MADENet’s superior performance, achieving 
95.1% prediction accuracy (R²=0.9515, MAE=0.2320) and outperforming 15 baseline algorithms with MAE improvements 
rang-ing from 7.7% to 70% across diff erent algorithmic paradigms. Embedded SHAP and LIME explainable AI frameworks 
systematically identify hour-of-day, temperature, and humid-ity as dominant spatio-temporal drivers while quantifying their 
nonlinear interactions with demand patterns.These innovations provide transparent operational protocols for station layout op-
timization, dynamic fl eet rebalancing, and evidence-based policy formu-lation, ultimately advancing data-driven governance 
of sustainable urban mobility sys-tems through actionable insights that bridge algorithmic predictions with practical urban 
planning requirements.
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1.Introduction
The rapid urbanization observed in recent decades has intensified challenges such as traffic congestion, environmental 
degradation, and strained public transportation systems [1]. A critical contributor to these issues is the overreliance on 
private vehicles, which ac-count for approximately 11% of global carbon dioxide emissions [2] and impose severe economic 
burdens—for instance, traffi  c congestion alone costs China an estimated USD 35 billion annually [3]. In response to these dual 
crises of sustainability and urban effi  -ciency, bike-sharing systems have emerged as a transformative mobility solution. Since 
their inception, these programs have experienced explosive global growth: active bike-sharing fl eets surged from 700,000 
to 2 million in the United States between 2013 and 2016, with over 2,000 systems now operating nearly 10 million bicycles 
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worldwide [4]. By providing affordable, eco-friendly “last-mile” connectivity, bike-sharing networks reduce reliance on private 
cars while alleviating congestion and emissions.
Accurate demand forecasting and bicycle allocation remain critical bottlenecks for optimizing bike-sharing system efficiency. 
While traditional time-series models such as ARIMA and linear regression [5-10] often fail to capture intricate spatio-temporal 
de-pendencies and heterogeneous external factors, recent deep learning approaches have improved predictive performance 
through temporal dependency modeling [11-12]. How-ever, these solutions face a fundamental accuracy-interpretability trade-
off: high-dimensional meteorological and urban infrastructure data exacerbate overfitting risks in sparse datasets, while the 
inherent opacity of neural networks undermines stake-holders’ trust in critical urban planning decisions where interpretability 
is essen-tial—such as justifying infrastructure investments or optimizing fleet rebalancing strate-gies [13-15].
Current literature reveals significant methodological gaps in bike-sharing demand forecasting, where existing research 
typically addresses predictive accuracy and model interpretability as separate processes, resulting in suboptimal frameworks 
for urban mo-bility management. Contemporary deep learning approaches predominantly focus on maximizing prediction 
performance through increasingly complex architectures, while traditional interpretable models sacrifice accuracy for 
transparency, creating a funda-mental dichotomy that fails to meet the dual requirements of municipal decision-making 
contexts. The unique challenges in bike-sharing demand prediction—dynamic spa-tio-temporal dependencies, complex me-
teorological-mobility interactions, and stringent requirements for both operational accuracy and transparent decision-making 
sup-port—demand specialized methodological considerations that contemporary approaches inadequately address.
To address these limitations, this investigation introduces MADENet, a novel neural architecture synergistically combining 
multi-head attention mechanisms with adaptive dropout regularization and early-stopping protocols for enhanced bike-sharing 
demand forecasting. The framework systematically addresses the accuracy-interpretability trade-off by embedding explain-
able AI techniques directly into the prediction pipeline, enabling efficient capture of cross-regional demand correlations while 
mitigating overfit-ting without compromising computational efficiency.
The principal contributions encompass:
• Novel Architecture Design: Introduction of an innovative neural framework integrat-ing multi-head attention mechanisms 
that dynamically capture cross-regional de-mand dependencies and temporal periodicity patterns, coupled with multilayer 
per-ceptron components and adaptive regularization strategies specifically tailored for spatio-temporal bike-sharing data;
• Superior Predictive Performance: Achieved exceptional forecasting accuracy (95.1% accuracy, R²=0.9515, MAE=0.2320) 
outperforming 15 baseline algorithms with MAE improvements ranging from 7.7% to 70% across different algorithmic 
paradigms in-cluding deep learning, ensemble methods, and traditional statistical approaches;
• Comprehensive Explainability Integration: Embedded SHAP and LIME interpretabil-ity frameworks ensuring operational 
transparency for municipal decision-making applications, systematically identifying key spatio-temporal drivers including 
hour-of-day, temperature, and humidity while quantifying their nonlinear interac-tions with urban mobility patterns.
The remainder of this paper is organized as follows: Section 2 reviews existing methodologies in bike-sharing demand 
prediction and highlights unresolved challenges. Section 3 presents preliminary work, including data preprocessing and 
exploratory visu-alization analysis of temporal and environmental factors influencing bike-sharing de-mand. Section 4 details 
the MADENet architecture, covering its attention mechanisms and regularization strategies. Section 5 presents experimental 
results and comparative anal-yses, exploring interpretability outcomes via SHAP and LIME to connect algorithmic be-havior 
with practical urban mobility strategies. Finally, Section 6 concludes by discussing implications for sustainable smart city 
governance and outlines future research directions.

2.Related Works
The rapid growth of bike-sharing systems as sustainable urban mobility solutions has intensified the need for accurate 
demand forecasting. Data-driven approaches, partic-ularly machine learning, have propelled this field forward, yet existing 
frameworks still struggle to capture dynamic spatio-temporal dependencies while maintaining operational interpretability for 
practical deployment [5,13,30].
Early research predominantly relied on statistical methods such as time series analy-sis and linear regression [6–10]. Although 
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these approaches provided foundational in-sights, they often failed to capture nonlinear interactions arising from weather 
fluctua-tions, special events, and complex urban dynamics. Studies that integrated seasonal and weather factors [5–6,16] 
established valuable baselines but exhibited limited adaptability to real-world volatility. Sathishkumar et al. [7] incorporated 
weather and usage data into a Gradient Boosting Machine to predict hourly bike-sharing demand, yet its robustness to rare 
events remained unclear.
Machine learning models marked a paradigm shift by addressing nonlinear effects and temporal interactions. Random 
Forest and Gradient Boosting Machines (GBMs) pro-duced promising results [28-29], while Schnieder [18] demonstrated that 
temperature, distance, wind, and elevation accounted for 21–27% of potential e-bike usage. Hu et al. [19] employed a grid 
search-optimized XGBoost model for Washington rental data, but it did not adequately handle abrupt real-time demand 
shifts. Lee et al. [14] illustrated that in-corporating air pollution, traffic, and socio-economic variables can enhance predictive 
performance, reinforcing the potential of diverse data sources.
Deep learning approaches have attempted to bridge gaps by jointly modeling spatial and temporal complexities. LSTMs 
outperformed GBMs for weekend demand [10], and CNN-based models introduced spatial awareness through demand 
heatmaps [11]. How-ever, rigid grid structures often clashed with organic urban layouts. Li et al. [17] intro-duced STG2Vec, an 
attention-based graph embedding model, to learn heterogeneous spa-tio-temporal patterns for improved demand prediction. 
Li et al. [20] developed a Spa-tial-Temporal Memory Network (STMN) to capture short-term spatio-temporal patterns more 
effectively.
Recent hybrid approaches have shown promising results in addressing specific op-erational challenges. Yu et al. [30] integrated 
SARIMA with LSTM to predict bicycle flows around metro stations, while Wang et al. [38] proposed a model-data dual-driven 
ap-proach combining SARIMA and extended Long Short-Term Memory (xLSTM) networks, achieving high R-squared 
values (0.9928-0.9535) with 8% improvement over conventional LSTM. However, dual-component fusion introduces 
computational complexity and po-tential calibration challenges when adapting to different metropolitan contexts.
Graph Neural Networks (GNNs) emerged as a state-of-the-art paradigm by repre-senting stations as graph nodes [12]. 
However, their static graph architectures struggled to adapt to rapid demand fluctuations due to weather changes. Liang et 
al. [22] proposed a Domain-Adversarial Multi-Relational Graph Neural Network (DA-MRGNN) that lever-ages multimodal 
transport data, mitigating negative transfer between modes.
Recent advances have focused on improving GNN architectures for bike-sharing ap-plications. Behroozi et al. [36] proposed 
a gate graph convolutional neural network inte-grating trajectory, weather, and access data, though the framework may 
struggle with computational scalability due to dynamic graph topology changes. Qian et al. [37] devel-oped CGA-STNet for 
dockless bike-sharing demand prediction, integrating mul-ti-dimensional spatial features and time periodicity through Fourier 
transforms, achieving 16.3% MSE reduction over benchmark models but with limitations in handling long-er-term seasonal 
variations. Xiang et al. [41] combined dynamic time warping with spa-tio-temporal graph attention networks, using data-driven 
adjacency matrices and mul-ti-scale temporal features, though computational complexity may limit scalability.
Recent research has explored sophisticated frameworks addressing both prediction accuracy and operational challenges. Guo 
et al. [39] developed an XGBoost-based three-stage prediction approach that addresses the gap between observed bike pickup/
drop-off records and true user demand by incorporating unsatisfied demand from empty or full stations. While demonstrating 
superior performance using Citi Bike data from New York, the framework’s computational complexity and dependency on 
historical patterns may limit real-time implementation and transferability across different systems.
Beyond predictive modeling, recent research has explored optimization-driven ap-proaches. Shi et al. [40] introduced a 
generative-model-informed reinforcement learning approach for long-term inventory management in hybrid bike-sharing 
systems, utilizing a recurrent-attentive neural process (RANP) for demand prediction and a cooperative two-agent MDP 
framework for bike-ebike allocation optimization. While demonstrating superior performance, the framework’s complexity 
may pose challenges for real-time de-ployment. Giner Fabregat et al. [42] developed an intelligent optimization framework for 
Barcelona’s Bicing system, combining clustering analysis and machine learning-based demand prediction with optimization 
algorithms for efficient rebalancing strategies.
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Despite noteworthy gains in accuracy, hybrid and deep learning models often lack explainability, limiting their usefulness 
in municipal decision-making contexts [25–26]. The “black-box” nature of these complex models raised concerns regarding 
transparency and stakeholder trust. Explainable AI (XAI) methodologies have thus emerged to balance predictive power with 
interpretability [27], offering mechanisms to unveil the decision logic of otherwise opaque models [25,26]. However, existing 
XAI applications in bike-sharing prediction rarely undergo thorough validation against empirical urban mo-bility patterns, 
underscoring the need for interpretable frameworks that align with re-al-world operational constraints [35].
Despite significant advances in bike-sharing demand forecasting, critical gaps re-main in achieving the optimal balance 
between predictive accuracy and operational in-terpretability. Current deep learning approaches are predominantly adapted 
from general time-series prediction without adequate consideration of urban mobility-specific require-ments, such as real-
time deployment constraints, cross-regional transferability, and mu-nicipal decision-making transparency. The relationship 
between model architectural complexity and explanation reliability represents a fundamental but understudied aspect, 
potentially leading to urban planning decisions based on explanations derived from models that may not adequately capture 
the nuanced spatio-temporal dynamics of bike-sharing systems. Most studies focus on algorithmic performance metrics 
without sufficient consideration of practical integration into municipal planning workflows, where computational efficiency, 
regulatory transparency, and stakeholder interpretability significantly influence real-world applicability.
Our work addresses these gaps by introducing MADENet, a novel neural architecture that integrates multi-head attention 
mechanisms with adaptive dropout regularization, specifically designed for bike-sharing demand forecasting. By embedding 
explainable AI frameworks (SHAP and LIME) directly into the predictive pipeline, we provide both theo-retical foundations 
and empirical validation of the approach’s effectiveness in delivering transparent, actionable insights for sustainable urban 
mobility management.

3.Preliminary
3.1 Data Overview
As shown in Table 1, this study selects data provided by Capital Bicycle, which in-cludes information such as date, season, 
and weather conditions.

Table1: Data Field Description.

Field Name Description

year Year of observation

month Month of observation

day Day of observation

hour Hour of observation

weekday Day of the week

season Season of observation

holiday Whether it is a holiday

workingday Whether it is a working day

weather Weather condition

temp Temperature in Celsius

atemp Body temperature in Celsius

humidity Humidity of the environment

windspeed Wind speed in m/s

casual Number of casual users

registered Number of registered users

count Total number of bike rentals

day_type Type of the day (weekday/weekend)
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3.2 Data processing
Data preprocessing was a critical step to ensure the dataset was clean, well-structured, and suitable for accurate prediction. 
The initial dataset included 10,886 records for training and 6,493 records for testing, with 12 and 9 features, respectively. 
First, missing data were examined and no missing values were identifi ed in either the training or test datasets.
Outliers were then identified through the use of statistical methods. Variables like humidity, wind speed, and the target 
variable count exhibited irregularities. Specifically, wind speed contained numerous zero values, which were treated as 
potential missing data. To handle such cases, outlier removal was performed based on the criterion of values deviating more 
than 3 standard deviations from the mean.
For outlier correction in the atemp (apparent temperature), a linear regression model was employed to predict the correct 
values based on temperature, as defi ned by the formula:

     (1)
where  and  are the coeffi  cients derived from a linear regression model.
In the case of the target variable count, extreme outliers were eliminated using the following criteria:

      (2)
where   is the mean of the count variable and  is its standard deviation. Data points falling outside of this range 
were removed from the dataset.
A logarithmic transformation was then applied to the count variable to stabilize variance, as this transformation is eff ective in 
reducing skewness and making the data more normally distributed:

      (3)
Temporal features were also extracted from the timestamp column, including the day of the week, month, and hour, which 
were treated as categorical variables to capture time-dependent patterns.
These preprocessing operations ensured that the data were ready for model training, mitigating issues like outliers and skewed 
distributions while enriching the dataset with additional time-related features for improved predictive performance.

3.3 Correlation analysis
The data analysis aimed to identify key factors infl uencing shared bicycle demand, leveraging correlation analysis and trend 
evaluations. The correlation matrix (Figure 1) was calculated to explore the relationships between diff erent features and the 
target variable, count. The correlation coeffi  cient (r) between two variables, x and y, was computed using the formula:

     (4)

Where:  and  are the individual data points for variables and ,  and   are the mean values of  and , respectively, the 
summation is taken over all data points in the dataset.

Figure 1. Correlation Matrix of Bike-sharing Dataset Features.
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As shown in Figure 1, this correlation matrix illustrates the strength and direction of linear relationships between bike-sharing 
system variables. The analysis reveals several notable patterns among temporal, environmental, and operational factors. 
Temperature (temp) and apparent temperature (atemp) demonstrate a strong positive correlation (0.99), indicating their 
close relationship in weather conditions. Environmental variables show moderate correlations, with temperature exhibiting 
positive associations with seasonal patterns (0.40-0.44). Temporal variables display expected relationships, such as the 
moderate correlation between working days and day type (-0.98), refl ecting the distinction between weekdays and weekends. 
Holiday patterns show negative correlations with working days (-0.26), confi rming the inverse relationship between holidays 
and regular work schedules. Wind speed and humidity demonstrate relatively weak correlations with most other variables, 
suggesting their more independent infl uence on system usage patterns.

3.4 Infl uence of Time Conditions on Rental Demand
Figure 2. Monthly Bike Rental Trends.

Figure 2 demonstrated a general upward trajectory in shared bicycle usage from 2 years, with notable seasonal fl uctuations. 
Demand peaked during the summer and autumn months, with a signifi cant decline observed in spring and winter. Registered 
users consistently represented over 75% of the total rentals each month, although their proportion slightly decreased in the 
warmer months, indicating a shift in user behavior. Non-registered users exhibited a preference for rentals during hotter 
months, further supporting the notion that shared bicycles are often used for short-term, seasonal needs.

Figure 3. Daily Bike Rental Distribution by Weekday and Day Type.

Figure 3 revealed that Saturdays experienced the highest rental volumes, likely driven by leisure activities, while Sundays 
saw slightly reduced demand, possibly due to lower mobility. Rentals on weekdays were more consistent, with Fridays 
exhibiting the lowest demand, albeit still higher than other weekdays. The impact of holidays on demand was more variable, 
with seasonal eff ects infl uencing demand peaks, particularly lower usage in the spring and winter months.
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Figure 4. Hourly Bike Rental Patterns.

Figure 4 showed that registered users exhibited relatively stable demand throughout the day, while casual users demonstrated 
peak demand during morning and evening rush hours (7:00–8:00 and 17:00–18:00), reflecting their use of bicycles for 
commuting. These findings highlight the importance of considering time-related factors such as time of day, workdays, 
weekends, and holidays when planning for bicycle distribution and management.

3.5 Infl uence of Weather on Rental Demand
Figure 5. Impact of Weather Conditions on Bike Rental Demand.

Weather conditions emerged as a signifi cant factor infl uencing rental demand. The analysis of weather conditions (Figure 5) 
demonstrated a clear correlation between weather type and rental volumes. Interestingly, despite initial expectations, demand 
remained relatively high even during extreme weather events, such as heavy rain and snow. However, the distribution of 
weather-related data indicated that severe weather conditions, such as storms, led to a dramatic decline in rentals, with total 
demand during such events being just 1/9000th of the demand during clear weather, confi rming a strong negative correlation 
between weather severity and demand.
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Figure 6. Environmental Factor Infl uence on Average Bike Rental.

Environmental factors, including temperature, humidity, and windspeed (Figure 6), signifi cantly infl uenced rental demand. 
Demand was lowest around 4°C, increasing with temperature up to 36°C, beyond which it declined, indicating a preference 
for moderate weather. Humidity showed a negative correlation, with demand highest at 20% humidity, which is more 
favorable for outdoor activities. Windy speed also impacted demand. Rentals were stable at wind speeds between 10 and 40 
km/h, but sharply declined above 40 km/h. Interestingly, a brief rebound in demand was observed during high wind speeds 
around 17:00, likely due to commuter patterns during the evening rush hour. This suggests that while high wind speeds 
generally reduce rentals, commuter demand during peak hours can still drive usage.
These fi ndings demonstrate the signifi cant impact of both temporal and environmental conditions on shared bicycle rentals, 
with time-related factors revealing distinct hourly, weekly, and seasonal patterns, while environmental variables exhibit 
complex nonlinear relationships including temperature optima (4°C-36°C), humidity thresholds, and wind speed eff ects that 
interact dynamically across diff erent temporal contexts. These empirical insights directly inform our MADENet architecture 
design, where the observed temporal periodicity patterns necessitate attention mechanisms for dynamic feature weighting, the 
nonlinear environmental relationships require multilayer perceptron components to capture complex meteorological-demand 
interactions, and the identifi ed threshold eff ects guide our regularization strategy to ensure systematic integration of these 
multifaceted spatio-temporal and environmental factors without overfi tting. The following methodology section details how 
these empirical fi ndings are systematically integrated into our proposed framework.

4.Methodology
Chapter 4 introduces the MADENet model for bicycle-sharing demand forecasting, designed to address random user behavior 
and dynamic external factor that leads to supply–demand imbalance. MADENet integrates a multi-head attention mechanism 
with adaptive dropout regularization and early-stopping within a multilayer perceptron framework to strengthen key spatio-
temporal feature representations while preventing overfi tting. The architecture consists of fi ve sequential components—Input, 
Attention, Dropout, MLP and Output layers—where the attention module assigns probabilistic weights to critical regional and 
temporal signals, the adaptive dropout adapts its rate during training, and the MLP captures complex nonlinear dependencies.
Based on the described architecture and functional components, the proposed MADENet framework is structurally illustrated 
in Figure 7, which visually elucidates the synergistic integration of its multi-head attention mechanisms, adaptive dropout 
layers, and hierarchical feature processing pathways.

Figure 7. MADENet Framework Architecture.
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4.1 Multilayer Perceptron
The Multilayer Perceptron is a fundamental component of MADENet. It consists of an input layer, one or more hidden layers, 
and an output layer. Each neuron in a layer is connected to all neurons in the next layer:

The output of a neuron  in the -th layer is calculated as:
      (5)

Where: 

 is the number of neurons in the -th layer,

 is the weight between the  -th neuron in the -th layer and the -th neuron in the -th layer,
is the output of the -th neuron in the -th layer,

is the bias of the -th neuron in the -th layer, 
and  is the activation function, such as the sigmoid function  or the ReLU function ,

 signifi es the expectation operator applied to the weighted input.

4.2 Multi-Head Attention Mechanism
The multi-head attention mechanism in MADENet is used to dynamically capture cross-regional demand dependencies and 
temporal periodicity patterns.
The scaled dot-product attention is calculated as:

    (6)

Where:  is the query matrix,  is the key matrix,  is the value matrix, and  is the dimension of the keys.
The multi-head attention is composed of multiple parallel attention heads. The output of the multi-head attention is: 

     (7)

Where: , are the weight matrices for the -th head, and  is the output 
weight matrix.

4.3 Dropout
Dropout is a regularization technique used in MADENet to prevent overfitting. During training, neurons in a layer are 

randomly “dropped out” with a probability .
Let  be the input to a layer. The output  after applying dropout is:

      (8)

Where:  is a binary mask vector of the same length as , and each element  is randomly set to 0 with probability  and 1 
with probability .

4.4 Early Stopping
Early stopping is another technique to prevent overfi tting. It monitors the performance of the model on a validation set during 
training.

Let  be the error on the validation set at the -th training epoch. The training stops when the following condition is 
met: 

      (9)
Where:  is a predefi ned patience parameter, and  is a small positive constant. This ensures that the model does not over-
train on the training data and generalizes well to new data.

5.Experiment
5.1 Experimental Confi guration and Setup
The experimental evaluation was conducted using the Capital Bicycle dataset comprising over 17,000 hourly demand records 
with comprehensive temporal and environmental features including weather conditions, temperature, humidity, and seasonal 
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variables. The dataset was partitioned using an 8:2 stratifi ed split for training and testing to ensure representative sampling of 
underlying demand patterns and variability.
MADENet was implemented using Python and TensorFlow framework, with training executed on a high-performance 
computing cluster using optimized parallel processing. Input data was formatted as 3D tensors (samples, 1, features) to 
accommodate the multi-head attention mechanism requirements. The model architecture employed 4 attention heads with key 
dimension of 32, multilayer perceptron structure of [512, 256, 128] neurons, and adaptive dropout rates (0.2-0.3). Training 
optimization utilized the Adam optimizer (learning rate 0.001) with mean squared error loss function, batch size of 64, and 
early stopping strategy (patience=20) monitoring validation loss to prevent overfitting. Hyperparameter optimization was 
conducted through systematic grid search across attention heads, hidden layer confi gurations, dropout rates, L2 regularization 
strengths (0.0, 0.001, 0.01), and batch normalization settings, with training limited to 100 epochs maximum.

5.2 Performance Metrics
Model performance was evaluated using the following metrics:
R² measures how well the model explains the variance in the target variable and indicates the proportion of the total variation 
that is captured by the model. It is defi ned as:
      

(10)

MAE measures the average absolute difference between predicted and actual values, providing a straightforward 
interpretation of prediction accuracy. It is defi ned as: 
      

(11)

MSE calculates the average of the squared diff erences between the predicted and actual values, off ering a measure of how far 
predictions deviate from actual observations. It is defi ned as:
      

(12)

RMSE provides the square root of MSE, off ering an interpretable estimate of the average magnitude of prediction error in the 
same units as the target variable. It is defi ned as:
      

(13)

MAPE expresses the prediction error as a percentage of the actual values, providing an intuitive and scale-independent 
measure of model accuracy. It is defi ned as:
      

(14)

5.3 Comparative Analysis of Forecast Results
To comprehensively assess the performance of the MADENet model, Figure. 8 visualizes the predicted hourly bike-sharing 
demand alongside the actual recorded values across the test dataset. The continuous blue line represents the model's predicted 
values, while the orange dashed line denotes the ground truth. The graph clearly shows that MADENet captures both the 
short-term fl uctuations and long-term periodic patterns in user demand with high fi delity.
Throughout more than 2,000 test samples, the predicted curves closely track the empirical values without signifi cant lag or 
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deviation, even in regions with high vari-ance and sharp peaks. This alignment indicates that the model not only learns overall 
trends but also adapts well to abrupt changes likely caused by external factors such as holidays, weather anomalies, or peak 
commuting hours.

Figure 8. Comparison of predicted and true values.

As shown in Table 2, to evaluate the predictive performance and generalization ability of the proposed MADENet model, 
a comprehensive comparative analysis was conducted against a variety of baseline models, including traditional machine 
learning methods and advanced deep learning architectures. These models included IrConv-LSTM [32], CNN-LSTM [33], 
Bi-LSTM [9], DeepAR [34], Decision Tree Regression [10], LSTM [12], RNN, AdaBoost Regression, K-Nearest Neighbors 
(KNN), Support Vector Regression (SVR), Elastic Net, Bayesian Ridge, Ridge Regression, Linear Regression, and Lasso 
Regression.

Table 2. Model Evaluation Results.
Model R² MAE MSE RMSE MAPE

MADENet 0.9515 0.2320 0.1046 0.3234 7.3083

IrConv-LSTM 0.9363 0.2515 0.1263 0.3554 8.2922

CNN-LSTM 0.9205 0.2990 0.1600 0.4000 9.1285

Bi-LSTM 0.8281 0.4492 0.3437 0.5862 12.4637

DeepAR 0.9182 0.3028 0.1653 0.4066 9.4387

Decision Tree 0.9088 0.2933 0.1781 0.4220 8.8363

LSTM 0.8416 0.4416 0.3073 0.5544 12.7009

RNN 0.8046 0.4692 0.3924 0.6264 16.1000

AdaBoost 0.7829 0.5320 0.4301 0.6558 15.3739

KNN 0.7673 0.5050 0.4611 0.6790 16.4689

SVR 0.6367 0.6140 0.7198 0.8484 22.1008

Elastic Net 0.4742 0.7968 1.0267 1.0133 25.5929

Bayesian Ridge 0.4742 0.7959 1.0267 1.0133 25.5597

Ridge Regression 0.4740 0.7958 1.0271 1.0135 25.5543

Linear Regression 0.4739 0.7958 1.0273 1.0135 25.5526

Lasso Regression 0.4705 0.8014 1.0340 1.0169 25.7206
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MADENet achieves superior performance across all evaluation metrics, demonstrating exceptional predictive accuracy with 
R²=0.9515, MAE=0.2320, MSE=0.1046, RMSE=0.3234, and MAPE=7.31%. This comprehensive performance establishes 
MADENet as the leading method among all tested approaches.
Compared to advanced deep learning architectures, MADENet significantly outperforms CNN-LSTM with 22.4% MAE 
reduction and 34.6% MSE reduction, while achieving notable improvements of 7.7% in MAE over IrConv-LSTM. 
MADENet demonstrates substantial advantages over recurrent architectures, with 47.4% and 50.2% MAE improvements 
compared to Bi-LSTM and LSTM, respectively. Notably, MADENet surpasses the state-of-the-art probabilistic DeepAR 
model (R²=0.9182) by 3.6% in variance explanation while achieving 23.4% improvement in MAE, demonstrating superior 
eff ectiveness in capturing complex spatio-temporal demand patterns.
Against traditional machine learning approaches, MADENet exhibits remarkable performance gains. Compared to Decision 
Tree regression, MADENet achieves 4.7% higher R² and 20.9% lower MAE. The superiority extends to ensemble methods, 
with MADENet outperforming AdaBoost by 56.4% in MAE reduction and achieving 21.8% improvement over KNN. When 
evaluated against linear regression methods, MADENet demonstrates exceptional advancement with over 100% improvement 
in R² (from 0.47 to 0.9515) and approximately 70% reduction in prediction errors across all metrics.

5.4 Factor Analysis Based on SHAP Values
Figure 9. SHAP Anaylsis of the importance of impact factors.
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To enhance interpretability and understand MADENet's internal decision logic, SHAP values were employed to evaluate 
feature contributions to model outputs. Figure 9 presents the SHAP summary plot where each point represents a single 
SHAP value, with color gradients denoting feature values from low (blue) to high (red). The analysis reveals that temporal 
indicators, particularly hour-of-day variables, exert the greatest influence on model predictions, with the "hour" feature 
demonstrating both high density and wide spread, indicating its dominant role in shaping ridership forecasts and refl ecting 
strong regularity in daily urban mobility patterns.
Climatic and seasonal features such as temperature and humidity exhibit substantial but nuanced impacts, with warmer 
temperatures generally corresponding to increased predicted demand while humidity demonstrates complex nonlinear eff ects. 
Calendar context variables including working days, weekdays, and seasons present moderate SHAP infl uence with values 
clustering near zero, suggesting their eff ects depend primarily on interactions with other features rather than exerting strong 
independent infl uence, while environmental indicators like wind speed show relatively limited marginal contributions in the 
current model confi guration.

5.5 Factor Analysis Based on LIME Values
Figure 10. LIME Anayisis of the importance of impact factors.

LIME values were utilized to further investigate feature importance through global feature impact quantification. Figure 
10 shows the global LIME feature importance plot where positive values represent positive contributions and negative 
values indicate negative impacts. The analysis confi rms that time-of-day variables dominate the predictive power, with early 
morning hours exhibiting the highest positive impact, strongly suggesting commuter-driven demand patterns, while midday 
periods also demonstrate substantial positive infl uence, reinforcing the critical importance of specifi c temporal windows in 
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demand forecasting.
Temperature emerges as another crucial factor with consistent positive LIME values, indicating that warmer conditions 
generally increase bike-sharing demand and aligning with observed weather-behavior relationships in urban cycling 
environments. Notably, negative impacts are observed for certain months and seasonal variables, suggesting weather-
dependent demand variations, while some features display minimal contribution with LIME values near zero, indicating 
marginal influence and highlighting the model's ability to distinguish between critical and peripheral predictive factors.

6.Conclusions
This study successfully addresses the dual challenge of achieving high-precision and interpretable demand forecasting in 
urban bike-sharing systems through MADENet, a novel neural architecture combining multi-head attention, adaptive dropout, 
and early stopping mechanisms. The framework achieves 95.1% prediction accuracy while providing systematic transparency 
through integrated SHAP and LIME analysis, identifying hour-of-day, temperature, and humidity as dominant drivers. These 
interpretable insights empower urban planners with actionable guidance for station placement optimization, dynamic fleet 
rebalancing, and evidence-based policy formulation, ultimately supporting sustainable urban mobility through more effective 
resource allocation and environmental responsiveness.
Despite these advances, several limitations constrain the model's broader applicability. The evaluation on a single operator's 
dataset (Capital Bicycle) limits generalization across different operators, urban contexts, and regional characteristics with 
varying infrastructure, user behaviors, and operational constraints. Additionally, the reliance on static historical data rather 
than real-time dynamic data sources may reduce model effectiveness in rapidly evolving urban environments where demand 
patterns shift due to unexpected events, policy changes, or seasonal disruptions. These constraints highlight the need for more 
comprehensive validation frameworks that account for cross-regional variability and real-time operational dynamics.
Future research should prioritize expanding data sources through multi-operator collaborations and cross-city validation 
to enhance model generalizability and robustness across diverse urban environments. Critical development areas include 
federated learning architectures for privacy-preserving multi-operator training, online learning capabilities for real-time 
adaptability, and integration of unstructured data streams such as event schedules and social media indicators. Furthermore, 
extending MADENet's framework to other shared mobility modes (car-sharing, scooter-sharing) and developing 
scalable deployment strategies for different city sizes and infrastructure levels will enhance the model's practical utility 
for comprehensive multimodal transportation ecosystem management, fostering data-driven governance in smart city 
development.
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