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Abstract: With rapid urbanization and increasing motorization, bike-sharing systems have emerged as sustainable solutions
for urban “last-mile” connectivity. However, existing demand forecasting approaches face a critical trade-off between pre-
dictive accuracy and operational interpretability, limiting their practical deployment in municipal deci-sion-making contexts
where both reliable predictions and transparent insights are essen-tial. The study proposes MADENet, a novel neural architec-
ture that systematically ad-dresses this accuracy-interpretability challenge. The framework integrates three key inno-vations:
multi-head attention mechanisms to dynamically capture cross-regional demand dependencies and temporal periodicity
patterns; adaptive dropout with early-stopping regularization to mitigate overfitting in high-dimensional spatio-temporal
scenarios; and multilayer perceptron components to model complex nonlinear interactions between het-erogeneous external
factors and urban mobility patterns.Experimental evaluation demon-strates MADENet’s superior performance, achieving
95.1% prediction accuracy (R*=0.9515, MAE=0.2320) and outperforming 15 baseline algorithms with MAE improvements
rang-ing from 7.7% to 70% across different algorithmic paradigms. Embedded SHAP and LIME explainable Al frameworks
systematically identify hour-of-day, temperature, and humid-ity as dominant spatio-temporal drivers while quantifying their
nonlinear interactions with demand patterns.These innovations provide transparent operational protocols for station layout op-
timization, dynamic fleet rebalancing, and evidence-based policy formu-lation, ultimately advancing data-driven governance
of sustainable urban mobility sys-tems through actionable insights that bridge algorithmic predictions with practical urban
planning requirements.
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1.Introduction

The rapid urbanization observed in recent decades has intensified challenges such as traffic congestion, environmental
degradation, and strained public transportation systems ''. A critical contributor to these issues is the overreliance on
private vehicles, which ac-count for approximately 11% of global carbon dioxide emissions * and impose severe economic
burdens—for instance, traffic congestion alone costs China an estimated USD 35 billion annually "', In response to these dual
crises of sustainability and urban effi-ciency, bike-sharing systems have emerged as a transformative mobility solution. Since
their inception, these programs have experienced explosive global growth: active bike-sharing fleets surged from 700,000

to 2 million in the United States between 2013 and 2016, with over 2,000 systems now operating nearly 10 million bicycles
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worldwide ™. By providing affordable, eco-friendly “last-mile” connectivity, bike-sharing networks reduce reliance on private
cars while alleviating congestion and emissions.
Accurate demand forecasting and bicycle allocation remain critical bottlenecks for optimizing bike-sharing system efficiency.

519 often fail to capture intricate spatio-temporal

While traditional time-series models such as ARIMA and linear regression
de-pendencies and heterogeneous external factors, recent deep learning approaches have improved predictive performance
through temporal dependency modeling """, How-ever, these solutions face a fundamental accuracy-interpretability trade-
off: high-dimensional meteorological and urban infrastructure data exacerbate overfitting risks in sparse datasets, while the
inherent opacity of neural networks undermines stake-holders’ trust in critical urban planning decisions where interpretability
is essen-tial—such as justifying infrastructure investments or optimizing fleet rebalancing strate-gies "),

Current literature reveals significant methodological gaps in bike-sharing demand forecasting, where existing research
typically addresses predictive accuracy and model interpretability as separate processes, resulting in suboptimal frameworks
for urban mo-bility management. Contemporary deep learning approaches predominantly focus on maximizing prediction
performance through increasingly complex architectures, while traditional interpretable models sacrifice accuracy for
transparency, creating a funda-mental dichotomy that fails to meet the dual requirements of municipal decision-making
contexts. The unique challenges in bike-sharing demand prediction—dynamic spa-tio-temporal dependencies, complex me-
teorological-mobility interactions, and stringent requirements for both operational accuracy and transparent decision-making
sup-port—demand specialized methodological considerations that contemporary approaches inadequately address.

To address these limitations, this investigation introduces MADENet, a novel neural architecture synergistically combining
multi-head attention mechanisms with adaptive dropout regularization and early-stopping protocols for enhanced bike-sharing
demand forecasting. The framework systematically addresses the accuracy-interpretability trade-off by embedding explain-
able Al techniques directly into the prediction pipeline, enabling efficient capture of cross-regional demand correlations while
mitigating overfit-ting without compromising computational efficiency.

The principal contributions encompass:

* Novel Architecture Design: Introduction of an innovative neural framework integrat-ing multi-head attention mechanisms
that dynamically capture cross-regional de-mand dependencies and temporal periodicity patterns, coupled with multilayer
per-ceptron components and adaptive regularization strategies specifically tailored for spatio-temporal bike-sharing data;

* Superior Predictive Performance: Achieved exceptional forecasting accuracy (95.1% accuracy, R>=0.9515, MAE=0.2320)
outperforming 15 baseline algorithms with MAE improvements ranging from 7.7% to 70% across different algorithmic
paradigms in-cluding deep learning, ensemble methods, and traditional statistical approaches;

» Comprehensive Explainability Integration: Embedded SHAP and LIME interpretabil-ity frameworks ensuring operational
transparency for municipal decision-making applications, systematically identifying key spatio-temporal drivers including
hour-of-day, temperature, and humidity while quantifying their nonlinear interac-tions with urban mobility patterns.

The remainder of this paper is organized as follows: Section 2 reviews existing methodologies in bike-sharing demand
prediction and highlights unresolved challenges. Section 3 presents preliminary work, including data preprocessing and
exploratory visu-alization analysis of temporal and environmental factors influencing bike-sharing de-mand. Section 4 details
the MADENet architecture, covering its attention mechanisms and regularization strategies. Section 5 presents experimental
results and comparative anal-yses, exploring interpretability outcomes via SHAP and LIME to connect algorithmic be-havior
with practical urban mobility strategies. Finally, Section 6 concludes by discussing implications for sustainable smart city

governance and outlines future research directions.

2.Related Works

The rapid growth of bike-sharing systems as sustainable urban mobility solutions has intensified the need for accurate
demand forecasting. Data-driven approaches, partic-ularly machine learning, have propelled this field forward, yet existing
frameworks still struggle to capture dynamic spatio-temporal dependencies while maintaining operational interpretability for
practical deployment ",

Early research predominantly relied on statistical methods such as time series analy-sis and linear regression '*'”. Although
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these approaches provided foundational in-sights, they often failed to capture nonlinear interactions arising from weather
fluctua-tions, special events, and complex urban dynamics. Studies that integrated seasonal and weather factors °*'%
established valuable baselines but exhibited limited adaptability to real-world volatility. Sathishkumar et al. ! incorporated
weather and usage data into a Gradient Boosting Machine to predict hourly bike-sharing demand, yet its robustness to rare
events remained unclear.

Machine learning models marked a paradigm shift by addressing nonlinear effects and temporal interactions. Random

28-29 (18

Forest and Gradient Boosting Machines (GBMs) pro-duced promising results “**”', while Schnieder ""® demonstrated that
temperature, distance, wind, and elevation accounted for 21-27% of potential e-bike usage. Hu et al. " employed a grid
search-optimized XGBoost model for Washington rental data, but it did not adequately handle abrupt real-time demand
shifts. Lee et al. "' illustrated that in-corporating air pollution, traffic, and socio-economic variables can enhance predictive
performance, reinforcing the potential of diverse data sources.

Deep learning approaches have attempted to bridge gaps by jointly modeling spatial and temporal complexities. LSTMs
outperformed GBMs for weekend demand """, and CNN-based models introduced spatial awareness through demand
heatmaps "". How-ever, rigid grid structures often clashed with organic urban layouts. Li et al. "” intro-duced STG2Vec, an
attention-based graph embedding model, to learn heterogencous spa-tio-temporal patterns for improved demand prediction.
Li et al. “” developed a Spa-tial-Temporal Memory Network (STMN) to capture short-term spatio-temporal patterns more
effectively.

Recent hybrid approaches have shown promising results in addressing specific op-erational challenges. Yu et al. *” integrated
SARIMA with LSTM to predict bicycle flows around metro stations, while Wang et al. ™™ proposed a model-data dual-driven
ap-proach combining SARIMA and extended Long Short-Term Memory (xXLSTM) networks, achieving high R-squared
values (0.9928-0.9535) with 8% improvement over conventional LSTM. However, dual-component fusion introduces
computational complexity and po-tential calibration challenges when adapting to different metropolitan contexts.

Graph Neural Networks (GNNs) emerged as a state-of-the-art paradigm by repre-senting stations as graph nodes .
However, their static graph architectures struggled to adapt to rapid demand fluctuations due to weather changes. Liang et
al. ™ proposed a Domain-Adversarial Multi-Relational Graph Neural Network (DA-MRGNN) that lever-ages multimodal
transport data, mitigating negative transfer between modes.

Recent advances have focused on improving GNN architectures for bike-sharing ap-plications. Behroozi et al. ** proposed
a gate graph convolutional neural network inte-grating trajectory, weather, and access data, though the framework may
struggle with computational scalability due to dynamic graph topology changes. Qian et al.”” devel-oped CGA-STNet for
dockless bike-sharing demand prediction, integrating mul-ti-dimensional spatial features and time periodicity through Fourier
transforms, achieving 16.3% MSE reduction over benchmark models but with limitations in handling long-er-term seasonal
variations. Xiang et al. "' combined dynamic time warping with spa-tio-temporal graph attention networks, using data-driven
adjacency matrices and mul-ti-scale temporal features, though computational complexity may limit scalability.

Recent research has explored sophisticated frameworks addressing both prediction accuracy and operational challenges. Guo
et al. ®” developed an XGBoost-based three-stage prediction approach that addresses the gap between observed bike pickup/
drop-off records and true user demand by incorporating unsatisfied demand from empty or full stations. While demonstrating
superior performance using Citi Bike data from New York, the framework’s computational complexity and dependency on
historical patterns may limit real-time implementation and transferability across different systems.

1. "™ introduced a

Beyond predictive modeling, recent research has explored optimization-driven ap-proaches. Shi et a
generative-model-informed reinforcement learning approach for long-term inventory management in hybrid bike-sharing
systems, utilizing a recurrent-attentive neural process (RANP) for demand prediction and a cooperative two-agent MDP
framework for bike-ebike allocation optimization. While demonstrating superior performance, the framework’s complexity
may pose challenges for real-time de-ployment. Giner Fabregat et al. ) developed an intelligent optimization framework for
Barcelona’s Bicing system, combining clustering analysis and machine learning-based demand prediction with optimization

algorithms for efficient rebalancing strategies.
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Despite noteworthy gains in accuracy, hybrid and deep learning models often lack explainability, limiting their usefulness
in municipal decision-making contexts ** % The “black-box” nature of these complex models raised concerns regarding
transparency and stakeholder trust. Explainable Al (XAI) methodologies have thus emerged to balance predictive power with
interpretability *”), offering mechanisms to unveil the decision logic of otherwise opaque models ***. However, existing
XAI applications in bike-sharing prediction rarely undergo thorough validation against empirical urban mo-bility patterns,
underscoring the need for interpretable frameworks that align with re-al-world operational constraints >

Despite significant advances in bike-sharing demand forecasting, critical gaps re-main in achieving the optimal balance
between predictive accuracy and operational in-terpretability. Current deep learning approaches are predominantly adapted
from general time-series prediction without adequate consideration of urban mobility-specific require-ments, such as real-
time deployment constraints, cross-regional transferability, and mu-nicipal decision-making transparency. The relationship
between model architectural complexity and explanation reliability represents a fundamental but understudied aspect,
potentially leading to urban planning decisions based on explanations derived from models that may not adequately capture
the nuanced spatio-temporal dynamics of bike-sharing systems. Most studies focus on algorithmic performance metrics
without sufficient consideration of practical integration into municipal planning workflows, where computational efficiency,
regulatory transparency, and stakeholder interpretability significantly influence real-world applicability.

Our work addresses these gaps by introducing MADENet, a novel neural architecture that integrates multi-head attention
mechanisms with adaptive dropout regularization, specifically designed for bike-sharing demand forecasting. By embedding
explainable Al frameworks (SHAP and LIME) directly into the predictive pipeline, we provide both theo-retical foundations
and empirical validation of the approach’s effectiveness in delivering transparent, actionable insights for sustainable urban

mobility management.

3.Preliminary
3.1 Data Overview
As shown in Table 1, this study selects data provided by Capital Bicycle, which in-cludes information such as date, season,
and weather conditions.
Tablel: Data Field Description.

Field Name Description
year Year of observation
month Month of observation
day Day of observation
hour Hour of observation
weekday Day of the week
season Season of observation
holiday Whether it is a holiday
workingday Whether it is a working day
weather Weather condition
temp Temperature in Celsius
atemp Body temperature in Celsius
humidity Humidity of the environment
windspeed Wind speed in m/s
casual Number of casual users
registered Number of registered users
count Total number of bike rentals
day_type Type of the day (weekday/weekend)
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3.2 Data processing
Data preprocessing was a critical step to ensure the dataset was clean, well-structured, and suitable for accurate prediction.

The initial dataset included 10,886 records for training and 6,493 records for testing, with 12 and 9 features, respectively.
First, missing data were examined and no missing values were identified in either the training or test datasets.
Outliers were then identified through the use of statistical methods. Variables like humidity, wind speed, and the target
variable count exhibited irregularities. Specifically, wind speed contained numerous zero values, which were treated as
potential missing data. To handle such cases, outlier removal was performed based on the criterion of values deviating more
than 3 standard deviations from the mean.
For outlier correction in the atemp (apparent temperature), a linear regression model was employed to predict the correct
values based on temperature, as defined by the formula:

ateMppredicted = Bo + B1 - temperature (1)
where 8, and f§; are the coefficients derived from a linear regression model.
In the case of the target variable count, extreme outliers were eliminated using the following criteria:

[count — Yeoumtl > 30 count 2)
where [l gm: 18 the mean of the count variable and @ ,,,; is its standard deviation. Data points falling outside of this range
were removed from the dataset.

A logarithmic transformation was then applied to the count variable to stabilize variance, as this transformation is effective in
reducing skewness and making the data more normally distributed:

county,q = log(count +1) 3)
Temporal features were also extracted from the timestamp column, including the day of the week, month, and hour, which
were treated as categorical variables to capture time-dependent patterns.

These preprocessing operations ensured that the data were ready for model training, mitigating issues like outliers and skewed
distributions while enriching the dataset with additional time-related features for improved predictive performance.

3.3 Correlation analysis

The data analysis aimed to identify key factors influencing shared bicycle demand, leveraging correlation analysis and trend
evaluations. The correlation matrix (Figure 1) was calculated to explore the relationships between different features and the
target variable, count. The correlation coefficient (r) between two variables, x and y, was computed using the formula:

. 2 =) —Y)

VE @ =22 (i = ¥)?

Where: x; and y; are the individual data points for variables x and y, X and ¥ are the mean values of x and y, respectively, the

“4)

summation is taken over all data points in the dataset.

Figure 1. Correlation Matrix of Bike-sharing Dataset Features.
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As shown in Figure 1, this correlation matrix illustrates the strength and direction of linear relationships between bike-sharing
system variables. The analysis reveals several notable patterns among temporal, environmental, and operational factors.
Temperature (temp) and apparent temperature (atemp) demonstrate a strong positive correlation (0.99), indicating their
close relationship in weather conditions. Environmental variables show moderate correlations, with temperature exhibiting
positive associations with seasonal patterns (0.40-0.44). Temporal variables display expected relationships, such as the
moderate correlation between working days and day type (-0.98), reflecting the distinction between weekdays and weekends.
Holiday patterns show negative correlations with working days (-0.26), confirming the inverse relationship between holidays
and regular work schedules. Wind speed and humidity demonstrate relatively weak correlations with most other variables,
suggesting their more independent influence on system usage patterns.

3.4 Influence of Time Conditions on Rental Demand
Figure 2. Monthly Bike Rental Trends.
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Figure 2 demonstrated a general upward trajectory in shared bicycle usage from 2 years, with notable seasonal fluctuations.
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Demand peaked during the summer and autumn months, with a significant decline observed in spring and winter. Registered
users consistently represented over 75% of the total rentals each month, although their proportion slightly decreased in the
warmer months, indicating a shift in user behavior. Non-registered users exhibited a preference for rentals during hotter
months, further supporting the notion that shared bicycles are often used for short-term, seasonal needs.

Figure 3. Daily Bike Rental Distribution by Weekday and Day Type.
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Figure 3 revealed that Saturdays experienced the highest rental volumes, likely driven by leisure activities, while Sundays
saw slightly reduced demand, possibly due to lower mobility. Rentals on weekdays were more consistent, with Fridays
exhibiting the lowest demand, albeit still higher than other weekdays. The impact of holidays on demand was more variable,

with seasonal effects influencing demand peaks, particularly lower usage in the spring and winter months.
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Figure 4. Hourly Bike Rental Patterns.
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Figure 4 showed that registered users exhibited relatively stable demand throughout the day, while casual users demonstrated
peak demand during morning and evening rush hours (7:00-8:00 and 17:00-18:00), reflecting their use of bicycles for
commuting. These findings highlight the importance of considering time-related factors such as time of day, workdays,
weekends, and holidays when planning for bicycle distribution and management.

3.5 Influence of Weather on Rental Demand
Figure 5. Impact of Weather Conditions on Bike Rental Demand.
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Weather conditions emerged as a significant factor influencing rental demand. The analysis of weather conditions (Figure 5)
demonstrated a clear correlation between weather type and rental volumes. Interestingly, despite initial expectations, demand
remained relatively high even during extreme weather events, such as heavy rain and snow. However, the distribution of
weather-related data indicated that severe weather conditions, such as storms, led to a dramatic decline in rentals, with total
demand during such events being just 1/9000th of the demand during clear weather, confirming a strong negative correlation

between weather severity and demand.
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Figure 6. Environmental Factor Influence on Average Bike Rental.
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Environmental factors, including temperature, humidity, and windspeed (Figure 6), significantly influenced rental demand.
Demand was lowest around 4°C, increasing with temperature up to 36°C, beyond which it declined, indicating a preference
for moderate weather. Humidity showed a negative correlation, with demand highest at 20% humidity, which is more
favorable for outdoor activities. Windy speed also impacted demand. Rentals were stable at wind speeds between 10 and 40
km/h, but sharply declined above 40 km/h. Interestingly, a brief rebound in demand was observed during high wind speeds
around 17:00, likely due to commuter patterns during the evening rush hour. This suggests that while high wind speeds
generally reduce rentals, commuter demand during peak hours can still drive usage.

These findings demonstrate the significant impact of both temporal and environmental conditions on shared bicycle rentals,
with time-related factors revealing distinct hourly, weekly, and seasonal patterns, while environmental variables exhibit
complex nonlinear relationships including temperature optima (4°C-36°C), humidity thresholds, and wind speed effects that
interact dynamically across different temporal contexts. These empirical insights directly inform our MADENet architecture
design, where the observed temporal periodicity patterns necessitate attention mechanisms for dynamic feature weighting, the
nonlinear environmental relationships require multilayer perceptron components to capture complex meteorological-demand
interactions, and the identified threshold effects guide our regularization strategy to ensure systematic integration of these
multifaceted spatio-temporal and environmental factors without overfitting. The following methodology section details how

these empirical findings are systematically integrated into our proposed framework.

4.Methodology

Chapter 4 introduces the MADENet model for bicycle-sharing demand forecasting, designed to address random user behavior
and dynamic external factor that leads to supply—demand imbalance. MADENet integrates a multi-head attention mechanism
with adaptive dropout regularization and early-stopping within a multilayer perceptron framework to strengthen key spatio-
temporal feature representations while preventing overfitting. The architecture consists of five sequential components—Input,
Attention, Dropout, MLP and Output layers—where the attention module assigns probabilistic weights to critical regional and
temporal signals, the adaptive dropout adapts its rate during training, and the MLP captures complex nonlinear dependencies.
Based on the described architecture and functional components, the proposed MADENet framework is structurally illustrated
in Figure 7, which visually elucidates the synergistic integration of its multi-head attention mechanisms, adaptive dropout
layers, and hierarchical feature processing pathways.
Figure 7. MADENet Framework Architecture.
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4.1 Multilayer Perceptron

The Multilayer Perceptron is a fundamental component of MADENet. It consists of an input layer, one or more hidden layers,
and an output layer. Each neuron in a layer is connected to all neurons in the next layer:
The output of a neuron y; in the [-th layer is calculated as:

m_q (5)
1 n_ (-1 1
yO=f E E[w}(,)xf )+b§)]
i=0
Where:

1;_4 1s the number of neurons in the (I — 1)-th layer,

0}
wj;

xl.(l_l)is the output of the j-th neuron in the (7 — 1)-th layer,

is the weight between the j -th neuron in the (] — 1)-th layer and the j-th neuron in the j-th layer,

b}(.!)is the bias of the j—th neuron in the j-th layer,
1

1+

and £ is the activation function, such as the sigmoid function o(x) = or the ReLU function f(x) = max(0, x):

E| - ] signifies the expectation operator applied to the weighted input.
4.2 Multi-Head Attention Mechanism
The multi-head attention mechanism in MADENet is used to dynamically capture cross-regional demand dependencies and
temporal periodicity patterns.
The scaled dot-product attention is calculated as:
Attention(Q, K, V) = soﬂmax(%)l/ (6)
k
Where: @ is the query matrix, K is the key matrix, V is the value matrix, and d, is the dimension of the keys.
The multi-head attention is composed of multiple parallel attention heads. The output of the multi-head attention is:
MultiHead(Q, K,V) = Concat(heady, ---, head,)W° (7)
Where:head; = Attention(QW?, KWK, vw¥), w?, w¥, ware the weight matrices for the j-th head, and W is the output
weight matrix.
4.3 Dropout
Dropout is a regularization technique used in MADENet to prevent overfitting. During training, neurons in a layer are
randomly “dropped out” with a probability p.
Let x be the input to a layer. The output y after applying dropout is:

o
y_lTpGx @®)

Where: r is a binary mask vector of the same length as x, and each element r; is randomly set to 0 with probability p and 1
with probability 1 — p.
4.4 Early Stopping
Early stopping is another technique to prevent overfitting. It monitors the performance of the model on a validation set during
training.
Let E, () be the error on the validation set at the ¢-th training epoch. The training stops when the following condition is
met:

Eva(t) > Eva(t — k) + € )
Where: k is a predefined patience parameter, and € is a small positive constant. This ensures that the model does not over-

train on the training data and generalizes well to new data.

S5.Experiment

5.1 Experimental Configuration and Setup
The experimental evaluation was conducted using the Capital Bicycle dataset comprising over 17,000 hourly demand records

with comprehensive temporal and environmental features including weather conditions, temperature, humidity, and seasonal

9
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variables. The dataset was partitioned using an 8:2 stratified split for training and testing to ensure representative sampling of
underlying demand patterns and variability.

MADENet was implemented using Python and TensorFlow framework, with training executed on a high-performance
computing cluster using optimized parallel processing. Input data was formatted as 3D tensors (samples, 1, features) to
accommodate the multi-head attention mechanism requirements. The model architecture employed 4 attention heads with key
dimension of 32, multilayer perceptron structure of [512, 256, 128] neurons, and adaptive dropout rates (0.2-0.3). Training
optimization utilized the Adam optimizer (learning rate 0.001) with mean squared error loss function, batch size of 64, and
early stopping strategy (patience=20) monitoring validation loss to prevent overfitting. Hyperparameter optimization was
conducted through systematic grid search across attention heads, hidden layer configurations, dropout rates, L2 regularization
strengths (0.0, 0.001, 0.01), and batch normalization settings, with training limited to 100 epochs maximum.

5.2 Performance Metrics

Model performance was evaluated using the following metrics:

R? measures how well the model explains the variance in the target variable and indicates the proportion of the total variation

that is captured by the model. It is defined as:

Z;_l (i = 9)? o
D iy

MAE measures the average absolute difference between predicted and actual values, providing a straightforward

Zi:l |yi_j}i| (11)

n

1-—-

interpretation of prediction accuracy. It is defined as:

MSE calculates the average of the squared differences between the predicted and actual values, offering a measure of how far

predictions deviate from actual observations. It is defined as:

M (12)

n

RMSE provides the square root of MSE, offering an interpretable estimate of the average magnitude of prediction error in the

same units as the target variable. It is defined as:

(13)

MAPE expresses the prediction error as a percentage of the actual values, providing an intuitive and scale-independent

measure of model accuracy. It is defined as:

yi — Y

2.
i=1

Yi
n

(14)

5.3 Comparative Analysis of Forecast Results
To comprehensively assess the performance of the MADENet model, Figure. 8 visualizes the predicted hourly bike-sharing

demand alongside the actual recorded values across the test dataset. The continuous blue line represents the model's predicted
values, while the orange dashed line denotes the ground truth. The graph clearly shows that MADENet captures both the
short-term fluctuations and long-term periodic patterns in user demand with high fidelity.

Throughout more than 2,000 test samples, the predicted curves closely track the empirical values without significant lag or

10
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deviation, even in regions with high vari-ance and sharp peaks. This alignment indicates that the model not only learns overall
trends but also adapts well to abrupt changes likely caused by external factors such as holidays, weather anomalies, or peak
commuting hours.

Figure 8. Comparison of predicted and true values.
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As shown in Table 2, to evaluate the predictive performance and generalization ability of the proposed MADENet model,
a comprehensive comparative analysis was conducted against a variety of baseline models, including traditional machine
learning methods and advanced deep learning architectures. These models included IrConv-LSTM [32], CNN-LSTM [33],
Bi-LSTM [9], DeepAR [34], Decision Tree Regression [10], LSTM [12], RNN, AdaBoost Regression, K-Nearest Neighbors
(KNN), Support Vector Regression (SVR), Elastic Net, Bayesian Ridge, Ridge Regression, Linear Regression, and Lasso
Regression.

Table 2. Model Evaluation Results.

Model R? MAE MSE RMSE MAPE
MADENet 0.9515 0.2320 0.1046 0.3234 7.3083
IrConv-LSTM 0.9363 0.2515 0.1263 0.3554 8.2922
CNN-LSTM 0.9205 0.2990 0.1600 0.4000 9.1285
Bi-LSTM 0.8281 0.4492 0.3437 0.5862 12.4637
DeepAR 0.9182 0.3028 0.1653 0.4066 9.4387
Decision Tree 0.9088 0.2933 0.1781 0.4220 8.8363
LSTM 0.8416 0.4416 0.3073 0.5544 12.7009
RNN 0.8046 0.4692 0.3924 0.6264 16.1000
AdaBoost 0.7829 0.5320 0.4301 0.6558 15.3739
KNN 0.7673 0.5050 0.4611 0.6790 16.4689

SVR 0.6367 0.6140 0.7198 0.8484 22.1008
Elastic Net 0.4742 0.7968 1.0267 1.0133 25.5929
Bayesian Ridge 0.4742 0.7959 1.0267 1.0133 25.5597
Ridge Regression 0.4740 0.7958 1.0271 1.0135 25.5543
Linear Regression 0.4739 0.7958 1.0273 1.0135 25.5526
Lasso Regression 0.4705 0.8014 1.0340 1.0169 25.7206
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MADENet achieves superior performance across all evaluation metrics, demonstrating exceptional predictive accuracy with
R?=0.9515, MAE=0.2320, MSE=0.1046, RMSE=0.3234, and MAPE=7.31%. This comprehensive performance establishes
MADENet as the leading method among all tested approaches.
Compared to advanced deep learning architectures, MADENet significantly outperforms CNN-LSTM with 22.4% MAE
reduction and 34.6% MSE reduction, while achieving notable improvements of 7.7% in MAE over IrConv-LSTM.
MADENet demonstrates substantial advantages over recurrent architectures, with 47.4% and 50.2% MAE improvements
compared to Bi-LSTM and LSTM, respectively. Notably, MADENet surpasses the state-of-the-art probabilistic DeepAR
model (R?=0.9182) by 3.6% in variance explanation while achieving 23.4% improvement in MAE, demonstrating superior
effectiveness in capturing complex spatio-temporal demand patterns.
Against traditional machine learning approaches, MADENet exhibits remarkable performance gains. Compared to Decision
Tree regression, MADENet achieves 4.7% higher R* and 20.9% lower MAE. The superiority extends to ensemble methods,
with MADENet outperforming AdaBoost by 56.4% in MAE reduction and achieving 21.8% improvement over KNN. When
evaluated against linear regression methods, MADENet demonstrates exceptional advancement with over 100% improvement
in R? (from 0.47 to 0.9515) and approximately 70% reduction in prediction errors across all metrics.
5.4 Factor Analysis Based on SHAP Values

Figure 9. SHAP Anaylsis of the importance of impact factors.
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To enhance interpretability and understand MADENet's internal decision logic, SHAP values were employed to evaluate
feature contributions to model outputs. Figure 9 presents the SHAP summary plot where each point represents a single
SHAP value, with color gradients denoting feature values from low (blue) to high (red). The analysis reveals that temporal
indicators, particularly hour-of-day variables, exert the greatest influence on model predictions, with the "hour" feature
demonstrating both high density and wide spread, indicating its dominant role in shaping ridership forecasts and reflecting
strong regularity in daily urban mobility patterns.

Climatic and seasonal features such as temperature and humidity exhibit substantial but nuanced impacts, with warmer
temperatures generally corresponding to increased predicted demand while humidity demonstrates complex nonlinear effects.
Calendar context variables including working days, weekdays, and seasons present moderate SHAP influence with values
clustering near zero, suggesting their effects depend primarily on interactions with other features rather than exerting strong
independent influence, while environmental indicators like wind speed show relatively limited marginal contributions in the
current model configuration.

5.5 Factor Analysis Based on LIME Values
Figure 10. LIME Anayisis of the importance of impact factors.
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LIME values were utilized to further investigate feature importance through global feature impact quantification. Figure
10 shows the global LIME feature importance plot where positive values represent positive contributions and negative
values indicate negative impacts. The analysis confirms that time-of-day variables dominate the predictive power, with early
morning hours exhibiting the highest positive impact, strongly suggesting commuter-driven demand patterns, while midday

periods also demonstrate substantial positive influence, reinforcing the critical importance of specific temporal windows in
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demand forecasting.

Temperature emerges as another crucial factor with consistent positive LIME values, indicating that warmer conditions
generally increase bike-sharing demand and aligning with observed weather-behavior relationships in urban cycling
environments. Notably, negative impacts are observed for certain months and seasonal variables, suggesting weather-
dependent demand variations, while some features display minimal contribution with LIME values near zero, indicating

marginal influence and highlighting the model's ability to distinguish between critical and peripheral predictive factors.

6.Conclusions

This study successfully addresses the dual challenge of achieving high-precision and interpretable demand forecasting in
urban bike-sharing systems through MADENet, a novel neural architecture combining multi-head attention, adaptive dropout,
and early stopping mechanisms. The framework achieves 95.1% prediction accuracy while providing systematic transparency
through integrated SHAP and LIME analysis, identifying hour-of-day, temperature, and humidity as dominant drivers. These
interpretable insights empower urban planners with actionable guidance for station placement optimization, dynamic fleet
rebalancing, and evidence-based policy formulation, ultimately supporting sustainable urban mobility through more effective
resource allocation and environmental responsiveness.

Despite these advances, several limitations constrain the model's broader applicability. The evaluation on a single operator's
dataset (Capital Bicycle) limits generalization across different operators, urban contexts, and regional characteristics with
varying infrastructure, user behaviors, and operational constraints. Additionally, the reliance on static historical data rather
than real-time dynamic data sources may reduce model effectiveness in rapidly evolving urban environments where demand
patterns shift due to unexpected events, policy changes, or seasonal disruptions. These constraints highlight the need for more
comprehensive validation frameworks that account for cross-regional variability and real-time operational dynamics.

Future research should prioritize expanding data sources through multi-operator collaborations and cross-city validation
to enhance model generalizability and robustness across diverse urban environments. Critical development areas include
federated learning architectures for privacy-preserving multi-operator training, online learning capabilities for real-time
adaptability, and integration of unstructured data streams such as event schedules and social media indicators. Furthermore,
extending MADENet's framework to other shared mobility modes (car-sharing, scooter-sharing) and developing
scalable deployment strategies for different city sizes and infrastructure levels will enhance the model's practical utility
for comprehensive multimodal transportation ecosystem management, fostering data-driven governance in smart city

development.
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