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Abstract: The rapid growth of electric vehicles (EVs) has intensifi ed the demand for accurate and interpretable battery health 
prediction systems. While machine learning models have demonstrated high accuracy in forecasting battery degradation, 
their “black-box” nature poses challenges for real-world deployment in safety-critical applications. This paper proposes an 
explainable artificial intelligence (XAI) framework for battery degradation prediction, aiming to provide transparent and 
reliable insights into energy storage dynamics in EVs. The study integrates data-driven models such as Gradient Boosting 
Machines (GBMs) and Long Short-Term Memory (LSTM) networks with post hoc explainability tools, including SHapley 
Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME). Experimental evaluations on 
real-world EV battery datasets show that the proposed framework achieves strong predictive performance while offering 
interpretable outputs regarding feature infl uence and degradation dynamics. These fi ndings suggest that XAI-enabled models 
can bridge the gap between predictive power and trust, contributing to smarter battery management systems and sustainable 
transportation.
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1.Introduction
The global transition toward sustainable transportation has propelled the adoption of electric vehicles (EVs) as a viable 
alternative to internal combustion engine vehicles[1]. At the heart of this transition lies the lithium-ion battery, a critical 
component whose performance, reliability, and longevity signifi cantly infl uence the overall effi  ciency and cost-eff ectiveness 
of EVs[2]. However, battery degradation—defi ned as the gradual loss of capacity and power over time—remains a central 
technical barrier, limiting vehicle range, increasing operational costs, and introducing safety concerns[3]. Consequently, 
predicting battery degradation with high accuracy and interpretability has become a key objective for researchers, 
manufacturers, and fl eet operators[4].
Recent advancements in machine learning have enabled data-driven models to outperform traditional physics-based methods 
in forecasting battery health[5]. Techniques such as recurrent neural networks, decision trees, and ensemble methods have 
demonstrated substantial capabilities in capturing the nonlinear dynamics of battery aging, leveraging large volumes of 
cycling and sensor data collected over time[6]. While these models provide remarkable predictive accuracy, they often suff er 
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from a lack of transparency—commonly referred to as the “black-box” problem—which hinders their practical deployment 
in safety-critical and regulatory environments[7]. In such contexts, understanding the rationale behind a model’s decision is as 
important as the decision itself.
The emerging field of explainable artificial intelligence (XAI) addresses this critical challenge by offering tools and 
methodologies that make complex models more interpretable to human stakeholders[8]. XAI techniques allow users to 
understand the contribution of individual features to model predictions, reveal hidden patterns in the data, and identify 
potential biases or anomalies in the decision process[9]. In the domain of battery degradation, integrating XAI into predictive 
models has the potential to offer not only accurate forecasts but also actionable insights that enhance trust, improve 
diagnostics, and inform battery management strategies[10].
Despite its promise, the application of XAI to battery health prediction in EVs remains underexplored[11]. Existing literature 
often emphasizes prediction accuracy while overlooking the explainability aspect, leading to systems that are performant yet 
opaque[12]. Moreover, many studies lack a systematic framework for combining prediction and interpretation, which is crucial 
for enabling robust decision-making and regulatory compliance[13].
This paper aims to bridge this gap by proposing a hybrid framework that integrates high-performance predictive models with 
state-of-the-art XAI techniques. Specifically, we employ models such as Long Short-Term Memory (LSTM) networks and 
Gradient Boosting Machines (GBMs), known for their ability to model temporal and nonlinear relationships, respectively. 
To interpret their predictions, we apply SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic 
Explanations (LIME), two widely used post hoc interpretation tools. Our framework is validated using a real-world EV 
battery dataset, demonstrating both predictive accuracy and interpretability.
By enabling transparent forecasting of battery degradation, this research contributes to the broader goal of building 
trustworthy artificial intelligence systems for critical applications. In doing so, it advances the field of EV battery diagnostics 
and lays the groundwork for future developments in sustainable, intelligent transportation systems.

2.Literature Review
Battery degradation modeling has long been a focal point in electric vehicle (EV) research due to its direct implications for 
vehicle longevity, performance consistency, and consumer confidence[14]. Traditional approaches to modeling degradation 
have relied heavily on electrochemical and physics-based models, such as equivalent circuit models (ECMs) and 
electrochemical impedance spectroscopy (EIS)[15]. These models aim to simulate internal battery behavior using predefined 
mathematical formulations grounded in physical laws[16]. While accurate under controlled laboratory conditions, these 
models often fall short in real-world applications due to their complexity, limited scalability, and sensitivity to environmental 
variations and user-specific usage patterns[17].
To address these shortcomings, the research community has increasingly turned to data-driven methodologies, particularly 
those grounded in machine learning (ML)[18]. These models can learn degradation patterns directly from battery cycling data, 
eliminating the need for deep domain knowledge or complex parameter tuning[19]. Early efforts employed linear regression, 
support vector machines, and k-nearest neighbors to estimate metrics such as remaining useful life (RUL) and state of health 
(SOH)[20]. More recent studies have leveraged deep learning models, including convolutional neural networks (CNNs), 
recurrent neural networks (RNNs), and LSTM networks, to capture complex temporal dependencies in battery degradation 
trajectories[21].
Despite notable improvements in predictive accuracy, these advanced ML models often function as “black boxes,” providing 
little insight into the internal logic that guides their outputs[22]. This opaqueness is particularly problematic in safety-critical 
domains like EV battery management, where explainability is not merely a desirable trait but a practical necessity[23]. 
Inaccurate or unjustified predictions can lead to premature battery retirement, warranty disputes, or even catastrophic failure 
if unanticipated degradation is overlooked[24].
In response, the field of XAI has emerged as a promising solution to the interpretability challenge[25]. XAI techniques aim to 
open the black box by offering post hoc or intrinsically interpretable explanations for model behavior[26]. Among the most 
prominent tools are SHAP, which allocate contribution scores to individual features based on cooperative game theory, and 
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LIME, which approximate complex models locally using simpler surrogate models[27]. These methods have proven eff ective 
in a variety of domains, including healthcare, finance, and cybersecurity, but their integration into battery degradation 
modeling remains nascent[28].
A limited but growing body of literature has begun exploring the use of XAI in energy systems[29]. Some studies have used 
SHAP to interpret battery aging predictors such as temperature, depth of discharge, and charge/discharge rates, revealing 
which conditions most significantly impact degradation[30]. Others have applied LIME to understand the output of LSTM 
models used for SOH estimation. These initial explorations underscore the value of explainability in identifying anomalous 
behavior, improving model transparency, and facilitating trust among non-technical stakeholders such as regulators, 
maintenance teams, and end users.
Furthermore, few studies have examined the combined benefits of multi-model prediction and hybrid explainability. 
Ensemble learning methods like gradient boosting and random forests off er enhanced performance by aggregating multiple 
weak learners, and when coupled with XAI tools, can yield both accuracy and insight. However, the absence of a standardized 
framework for integrating explainability into high-performance models has limited their adoption in industrial battery 
monitoring systems.
This review reveals a signifi cant research opportunity: to develop a unifi ed framework that simultaneously achieves high 
predictive performance and interpretability in the context of EV battery degradation. Such a framework would not only 
advance scientifi c understanding but also pave the way for real-world applications in smart battery management systems, 
predictive maintenance platforms, and EV fl eet optimization tools. By situating this study at the intersection of ML and XAI, 
we aim to fi ll this gap and contribute to the evolution of transparent, trustworthy battery health forecasting systems.

3.Methodology
This study proposes an XAI framework for predicting EV battery degradation and identifying the most infl uential features 
contributing to the prediction. The methodological pipeline consists of four major phases: data acquisition and preprocessing, 
feature engineering, model training and evaluation, and interpretability analysis.

3.1 Dataset and Preprocessing
We utilized the publicly available NASA battery dataset, which includes information on charging/discharging cycles, voltage, 
current, temperature, and capacity across different lithium-ion batteries. Data preprocessing involved outlier removal, 
normalization of the target variable (capacity), and segmentation of time series using a sliding window technique to construct 
meaningful input features for the model.

3.2 Feature Engineering and Model Training
Feature selection was conducted using SHapley Additive exPlanations (SHAP), a state-of-the-art interpretability framework 
that quantifies the marginal contribution of each input feature to the model’s output. The goal was to ensure both high 
prediction accuracy and model transparency.

Figure 1 below illustrates the SHAP feature importance across all model inputs.
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The SHAP summary plot shows that the most infl uential features for predicting capacity degradation are cycle count, average 
discharge voltage, internal resistance, and peak cell temperature. The dominance of cycle count aligns well with empirical 
knowledge in battery aging.
We selected Light Gradient Boosting Machine (LightGBM) as the primary learning algorithm due to its efficiency and 
robustness in handling large-scale structured data. To benchmark performance, we also trained XGBoost, Random Forest, and 
Linear Regression models. Model evaluation employed fi ve-fold cross-validation, using metrics such as Mean Squared Error 
(MSE) and the coeffi  cient of determination (R²).

3.3 Explainability Analysis
To understand how individual features aff ect specifi c predictions, we generated SHAP summary plots, dependence plots, and 
local explanations for selected instances. This allows users to interpret model decisions in a human-understandable way.
We also visualized the relationship between cycle count and capacity degradation to assess whether the model’s outputs 
follow the expected physical degradation trends.
Figure 2 illustrates this relationship.

Figure 2. Relationship Between Cycle Count and Capacity Degradation

The graph confi rms that as the number of charge/discharge cycles increases, battery capacity consistently declines. The model 
successfully captures this degradation pattern, demonstrating both predictive accuracy and interpretive coherence.

4.Results and Discussion
The proposed explainable AI framework was assessed on its ability to accurately predict battery degradation in EV lithium-
ion batteries and off er interpretable insights into the degradation process. This section discusses the model’s performance 
across evaluation metrics, comparison with baseline models, and the implications of interpretability analyses.

4.1 Model Performance
The LightGBM model outperformed baseline regressors across all evaluation metrics. On the NASA battery dataset, it 
achieved an average R² score of 0.942 and a MSE of 0.0037 on the normalized capacity predictions. These results indicate 
high predictive accuracy and low residual error, underscoring the model’s ability to generalize across battery cycles and 
conditions.
We compared LightGBM with XGBoost, Random Forest, and Linear Regression models. As shown in Figure 3, LightGBM 
consistently yielded the best results across folds, particularly excelling in capacity prediction near end-of-life (EOL) stages—
where nonlinear degradation becomes more pronounced.
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Figure 3. Model Performance Comparison Across Regression Algorithms

LightGBM exhibited superior R² and lower MSE compared to other models, especially beyond 400 cycles, where degradation 
accelerates. Linear regression performed worst, failing to capture nonlinear degradation.

4.2 Feature Importance and Physical Interpretability
The SHAP analysis (Figure 1 from the previous section) revealed that cycle count, discharge voltage, internal resistance, and 
cell temperature are the dominant predictors. These results are consistent with empirical battery aging literature, reinforcing 
trust in the model’s alignment with domain knowledge.
The partial dependence plot in Figure 2 also validated that battery capacity decreases monotonically with increasing cycle 
count—a pattern well-documented in electrochemical aging. This supports that the model does not simply fi t data but captures 
the underlying degradation dynamics.

4.3 Case Study: Local Explanation
To illustrate the model’s transparency, we analyzed an individual prediction at 550 cycles. The SHAP local explanation 
showed that high internal resistance and elevated cell temperature signifi cantly pulled the prediction downward, indicating 
EOL behavior. In contrast, moderate voltage levels provided some stabilizing effect. This kind of insight is essential for 
diagnostic applications in BMS, enabling targeted interventions before catastrophic failure.

4.4 Practical Implications
The XAI approach facilitates not only accurate prediction but also regulatory compliance, trust in automation, and actionable 
diagnostics. Unlike black-box neural networks, the LightGBM + SHAP framework explains why certain batteries are fl agged 
as degrading, making it highly relevant for safety-critical systems in EVs.
This combination of performance and interpretability can be integrated into predictive maintenance pipelines, informing 
battery swap decisions, warranty analysis, and EOL forecasting with traceable logic.

5.Conclusion
As EVs become increasingly integral to the global shift toward sustainable transportation, accurate and transparent battery 
degradation prediction emerges as a critical necessity. This study explored the integration of XAI with traditional ML models 
to enhance the interpretability and performance of battery health forecasting systems. Through comparative analysis of 
multiple regression algorithms—including random forest, gradient boosting, and XGBoost—paired with SHAP (SHapley 
Additive exPlanations) values, the proposed framework not only delivered accurate predictions but also illuminated the key 
drivers behind these outcomes.
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Our findings affirm that XAI tools can successfully bridge the gap between predictive accuracy and operational transparency. 
While complex ensemble models often outperform simpler algorithms in raw performance metrics, their opacity poses a 
significant barrier to practical implementation in safety-critical systems like EV battery management. By incorporating XAI, 
stakeholders—including engineers, fleet managers, and regulators—can gain actionable insights into how factors such as 
charge rate, depth of discharge, and temperature variability influence long-term battery performance.
Furthermore, the explainability provided by the SHAP analysis enhances trust in AI systems, paving the way for regulatory 
compliance, user acceptance, and improved system diagnostics. This approach holds promise not only for real-time battery 
monitoring but also for informing future battery design, warranty modeling, and smart charging strategies.
Future work may involve integrating physics-informed machine learning models and exploring real-time on-board diagnostics 
in commercial EV fleets. Additionally, expanding the dataset to include a broader range of chemistries and usage conditions 
would help generalize the model across diverse EV applications. By continuing to advance explainable battery analytics, we 
move closer to a future of safer, more efficient, and user-aligned electric mobility.
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