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Abstract: This paper presents a hybrid intraday electricity price forecasting model—Info-VMD-iTransformer-CNN-LSTM—
tailored for high-dimensional, non-stationary price series. First, variational mode decomposition (VMD) adaptively separates 
price signals into intrinsic modes, mitigating mode mixing and noise. Next, an improved Transformer (iTransformer) with 
enhanced positional encoding captures long-range dependencies, while CNN layers extract local spatio-temporal features 
and LSTM units model sequential dynamics. Finally, the INFO algorithm automates hyperparameter optimization, ensuring 
both high accuracy and robustness. Empirical evaluations demonstrate that our approach consistently outperforms existing 
benchmarks under volatile market conditions, making it well suited for real-time forecasting in modern power systems.
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1.Introduction
Intraday electricity price forecasting is pivotal for real-time market-driven trading and system dispatch, yet price series 
exhibit complex nonlinear and nonstationary behaviors due to uncertainties in load, generation, weather, policy, and high 
renewable penetration [1–2]. To mitigate nonstationarity, methods such as discrete wavelet transform (DWT) [3] and empirical 
mode decomposition (EMD) [4], along with noise-assisted extensions—including ensemble EMD (EEMD) [5], complete 
ensemble EMD with adaptive noise (CEEMDAN) [6], and improved CEEMDAN (ICEEMDAN) [7]—have been applied, 
but they incur signifi cant computational overhead and still suff er from incomplete noise suppression [8–9]. Variational mode 
decomposition (VMD) employs a variational framework to adaptively decompose price signals into multiresolution modes 
while eff ectively avoiding mode mixing, off ering superior computational effi  ciency compared to ICEEMDAN [10]. VMD has 
been successfully integrated with one-dimensional CNN–BiLSTM [11], CNN–LSTM [12], and EDE–BiLSTM [13] architectures 
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to substantially improve forecasting accuracy.
Traditional statistical time-series models (ARIMA, SARIMA, VAR, GARCH) provide interpretability but struggle with 
the strong nonlinearity and long-range dependencies typical of intraday prices [14–17]. Consequently, data-driven machine 
learning algorithms—Random Forest [18], decision tree regression [19], ANN [20], CatBoost [21], SVR [22], XGBoost [23], ELM 
[24]—and deep learning architectures—including CNN [25] (e.g., CNN–BiGRU [26]; secondary decomposition attention CNN–
LSTM–MLR [27]), LSTM [28–32], and Transformer-based models [33–36]—have become mainstream solutions. Hyperparameter 
optimization has leveraged classical metaheuristics—genetic algorithm [37], particle swarm optimization [38], ant colony 
optimization [39], gravitational search [40], teaching–learning-based optimization [41]—guided by the no-free-lunch theorem [42], 
as well as recent variants such as MPA [43], CSA [44], AOA [45], GEO [46], SFO [47], ChOA [48], SMA [49], DO [50], AVOA [51], AAM 
[52], BWO [53], ECO [54], HFA [55] and GOA [56], demonstrating efficacy in hybrid frameworks like EEMD + WPD + THPO–
DELM [57] and VMD–GWO–ATT–LSTM [58].
In this study, we develop a hybrid VMD–iTransformer–LSTM–INFO framework solely for intraday electricity price 
forecasting: VMD is employed to adaptively decompose nonstationary price series into distinct frequency modes , an 
improved Transformer (iTransformer) captures long‐range dependencies with enhanced positional encoding , LSTM 
layers model sequential temporal patterns , and the INFO algorithm efficiently optimizes all hyperparameters .  Extensive 
experiments on benchmark datasets demonstrate that our model consistently outperforms existing approaches in both 
accuracy and robustness under volatile market conditions. 

2.Related methodologies
2.1 Variational Mode Decomposition
Variational Mode Decomposition (VMD) is a decomposition algorithm applied to non-stationary signals, which can decom-
pose the original signal into a series of modal components with increasingly higher frequencies. Compared to Empirical 
Mode Decomposition (EMD) and Local Mean Decomposition (LMD), VMD can overcome two major drawbacks: endpoint 
effects and mode mixing.

The VMD algorithm decomposes the original non-stationary signal n  into k  relatively stationary sub-signals 

1 2{ , ,..., }nε ε ε , each with a central frequency nω  and a limited bandwidth. Each sub-signal serves as a band-limited intrin-
sic mode function (BLIMF) of the original signal, capable of reflecting the structural characteristics of the original signal at 
different time scales, as shown in equations (1) and (2) ：
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To estimate each modal component, VMD initially uses the Hilbert transform to obtain the one-sided frequency spectrum of 
each modal component during the solving process, as shown in equation (3):
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Here, ⊗  represents convolution. Next, the frequency spectrum of each modal component is modulated to its respective 
estimated central frequency’s baseband, as shown in equation (4):
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Here, kε  represents the k-th BLIMF, and kω  denotes the central frequency of kε . Furthermore, during the solving process, 
a quadratic penalty factor α  and a Lagrange multiplier operator ( )tλ  are introduced to convert the constrained variational 
problem into an unconstrained variational problem, as shown in equation (5):
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After completing the above steps, the unconstrained variational problem in equations (3)–(5) is solved using the Alternating 
Direction Method of Multipliers (ADMM). This completes the basic construction of the VMD model.

2.2 iTransformer
iTransformer is a variant of the Transformer model[36]. In simple terms, it achieves excellent performance in multivariate 
time series forecasting tasks by reversing the input time series. Its structure is shown in Figure 1.

Figure 1. Schematic of the iTransformer Encoding Layer Structure.

iTransformer only uses the encoder part of the Transformer model. Its structure consists of an embedding layer, Transformer 
blocks (TrmBlock), and a projection layer. The embedding layer is composed of a multi-layer perceptron (MLP). Unlike the 
Transformer, which embeds different variables at the same time point into a single token, iTransformer reverses the input 
sequence X with N variables and T time steps, then embeds each individual time series into a single token. The embedding 

layer maps the input sequence to a feature matrix 1 2{ , ,..., ,..., } N D
n NH h h h h ×= ∈ , where h  represents the token, and 

D  is the embedding projection dimension.
The TrmBlock layer consists of a multi-head self-attention layer, a normalization layer, and a feed-forward network, allowing 
the model to learn the temporal characteristics of different variables and the multi-dimensional correlations between them. 
The multi-head self-attention layer captures multivariate correlations through the attention mechanism. The attention map 

N NA ×∈ is obtained by mapping the input matrix to query vectors (Queries), key vectors (Keys), and value vectors 
(Values).
The purpose of the normalization layer is to reduce the differences caused by different measurement methods between 
variables, as shown in equation (6), enhancing the independence between variables and preventing the occurrence of non-sta-
tionarity issues. Therefore, the feed-forward network uses a multi-layer perceptron to learn the non-linear representations of 
the variables, as detailed in equation (7) ：
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Here, dff  represents the projection dimension. The projection layer consists of a multi-layer perceptron, which 
maps the hidden temporal features of each variable to the target time dimension 'T and then generates the future 

sequence
'

1 2{ , ,..., ,..., } N T
n NY y y y y ×= ∈ .Based on the above explanation, the encoding process for obtaining the 

predicted results, denoted as Y , for each specific variable X can be expressed by equations (8)–(10) ：

      0
:, )(n nh Em X=  (8)

     
1 TrmBlock(H ), 0,..., -1q qH q Q+ = =

 
(9)

      :, ( )Q
n nY Pj h=  (10)

Here, Q represents the number of TrmBlock layers, Em represents the embedding layer, and Pj represents the projection layer.
From the content of this section, it can be considered that iTransformer, based on the Transformer architecture, possesses 
strong sequence modeling capabilities and parallel processing ability. It can rapidly capture instantaneous changes and high-
frequency components in electricity price signals, accurately reflecting the details of price fluctuations. This makes it suitable 
for processing high-frequency electricity price signals obtained through VMD decomposition.

2.3 Convolutional Neural Networks
CNN (Convolutional Neural Networks) is a feedforward neural network proposed by LeCun et al. [25]. Generally, the CNN 
structure consists of convolutional layers, pooling layers, and fully connected layers, as shown in Figure 2. Essentially, 
CNNs attempt to build multiple filters that can extract hidden features through layer-by-layer convolution and pooling of the 
input data. Finally, these abstract features are merged through a fully connected layer and used with an activation function to 
address classification or regression problems [69].

Figure 2. Basic Architecture of Convolutional Neural Networks

In the convolutional layer, the feature map from the previous layer is convolved with the convolutional kernel, and 
the resulting feature map is generated by an activation function. The computation process of the convolutional layer is 
represented by equation (11):

     1( )
l

nn n n
j i C i jij

a f x k b−
∈= ∗ +∑  (11)

Here, 
n
ja  represents the i-th output feature map of the j-th layer, 

1n
ja −

 represents the j-th output feature map of the l-th layer, 

JC  represents the selection of input mapping, and 
n
ijk  denotes the operation between the i-th and j-th output feature maps. * 

represents convolution, 
l
jb  denotes the bias term, and ( )f ⋅ represents the Rectified Linear Unit (ReLU) activation function.

The pooling layer is used to reduce the number of parameters in the network. This is achieved by calculating the average 
value (average pooling) or the maximum value (max pooling) of a given region in the feature map. The computation process 
of the pooling layer is described in equation (12):

     1( ( ) )n n n
j j ja f down a bβ −= +  (12)
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Where ( )down ⋅  represents the subsampling function in the max pooling process.
In Eq（12）, na represents the final output vector, 1na −  represents the input vector, nW denotes the weights between the n-th 
and ((n+1)-th layers, and nb represents the bias.
In summary, CNNs, through convolution and pooling operations, effectively extract local features and mid-frequency 
information from electricity price signals, such as periodic patterns in price changes, while maintaining a relatively low 
computational complexity. This makes CNNs suitable for tasks that involve analyzing mid-frequency electricity price signals.

2.4 Long Short Term Memory 
LSTM (Long Short-Term Memory) networks are an enhanced type of recurrent neural network (RNN) that can automatically 
store and delete temporary state information. This capability addresses the vanishing gradient problem that RNNs encounter 
when processing long-term sequences, and it aids in extracting complex temporal features from time series data. As shown in 
Figure 3, the basic structure of an LSTM consists of an input layer, a recurrent layer, and an output layer.

The core component behind LSTM is the gating mechanism, which includes a hidden unit th , an input gate ti , an output 
gate to , a forget gate, an input modulation gate tg , and a storage unit (or memory unit) tc . The information flowing from 
the input gate ti  to the storage unit tc  is controlled by the input gate ti , while the output gate to  conditionally controls what 
information should be output to the rest of the network based on the output activation. The forget gate tf determines how 
much information in the unit’s internal state should be discarded before it is imported through the self-loop connection, with 
the purpose of forgetting or resetting the unit’s memory.

Figure 3. Schematic Diagram of the LSTM Gating Mechanism

Additionally, the storage unit and gating mechanism decide what information should be retained or forgotten, which helps 
ensure that the gradient is retained in the unit and continues to persist. When the input gate is open, the storage unit allows 
information to be added to the unit. During this process, if the forget gate is activated, information from the previous unit 
state can be disregarded. The output gate further determines what information flows from the updated unit output to the final 
state. Throughout this process, the input, unit output, and state are all one-dimensional vectors. To learn precise timing of the 
outputs, connections from the internal unit to each gate in the same unit, known as peek-hole connections, are introduced. 
Given the input vector at time step ttt, the previous hidden state, and the previous unit state, the LSTM update process is 
represented by equations (13)–(18) ：

    1 1( )t i t hi t ci t ii WM WM h WM c bθσ θ − −= + + +  (13)

    1 1( )t f t hf t cf t ff WM WM h WM c bθσ θ − −= + + +

 
(14)

     1( )t c t hc t cg WM WM h bθφ θ −= + +  (15)
      

1t t t t tc f c i g−= + 

 (16)

     1 0( )t o t ho t coo W W h WM bθσ θ −= + +   (17)

      ( )t t th o cϕ=   (18)
Here, WM  represents the corresponding weight matrix (Weight Matrix); for example, iWMθ  denotes the weight matrix from 
the input vector to the input gate, while ciWM , cfWM  and coWM  represent the diagonal weight matrices associated with the 
peephole connections. b denotes the corresponding bias vector, for instance, ib  represents the bias vector of the input gate. 
The symbol ⊙ indicates element-wise multiplication. The function ( )xσ  is used to compress its input into the range (0, 1) 
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and is known as the sigmoid non-linear function, while ( )xφ  denotes the hyperbolic tangent non-linear function, which also 
compresses its input into the range (-1, 1). Respectively，the mathematical expressions of the functions ( )xσ and ( )xφ  are 
provided in equations (19) and (20) ：

      1( )
1 xx

e
σ −=

+
 

(19)

      

( )
x x

x x

e ex
e e

φ
−

−

−
=

+

 

(20)

In summary, due to LSTM’s multi-layered and hierarchical architecture, it exhibits exceptional efficiency and powerful 
capability in feature representation. Specifically, LSTM can effectively capture and retain long-term dependencies in time 
series data through its unique memory mechanism. In the analysis of electricity price signals, low-frequency components 
often encapsulate important trends and periodic patterns in price changes. By leveraging this advantage of LSTM, we 
can extract deeper low-frequency features from electricity price signals by increasing the number of network layers. In 
this manner, LSTM is not only able to capture short-term fluctuations in electricity price signals but also accurately grasp 
their long-term trends, thereby providing robust technical support for electricity price forecasting and decision-making. 
Consequently, employing LSTM to capture the low-frequency components of electricity price signals is a rational and 
effective technical approach.

2.5 Weighted Mean of Vectors Algorithm
The INFO (Weighted Mean of Vectors)[59] algorithm is an improved weighted averaging method, with its core principle 
centered on optimizing the interactions among vectors by applying different weighted averaging rules. Given the high 
efficiency it demonstrates under specific constraints, the algorithm exhibits broad application prospects in fields such as 
optimization design.

Figure 4. INFO Algorithm Flowchart

As shown in Figure 4, the INFO algorithm mainly encompasses three core steps. First, the Updating Rules stage forms the 
foundation of the algorithm by generating new vectors based on convergence acceleration and the mean principle. Second, 
in the Vector Merging stage, the obtained vectors are combined with the updating rules to form superior vectors. Finally, to 
further enhance the algorithm’s performance and avoid local optima, a Local Search is conducted after the vector merging 
process.

2.5.1 Updating Rules Stage
In the rule updating stage, the INFO algorithm updates the positions of the vectors according to the mean rule. Additionally, 



7

Vol. 2 No. 2 (2025)Journal of Advances in Engineering and Technology

a convergence acceleration component is integrated at this stage to enhance global search capabilities. The definition of the 
mean rule is provided in equation (21):

    1 1Mean_Rules * 1 (1 )* 2g g
l lr W r W= + −  (21)

Here, l  is a random integer between 1 and n ; g  represents the iteration count; and 1r  is a random number with a range of 
[0,0.5]. The definition of 11gW  is given in equation (22):
   

1 0 2 3
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1 2 3
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w x x w x x w x xW r
w w w

σ ε
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(22)

In equation (24),σ  represents vector scaling, and its solution is given by equations (23)–(24):

      2 *randσ α α= −  (23)
      

2*exp( )
max( )

g
g

α = −
 

(24)

In addition, a , b , and c  are distinct integers within the range [1,N]; 1w , 2w and 3w  represent weighting functions used 
to calculate the weighted average of the vectors to enhance global search capability. The specific formula for the weighting 
functions is given in equation (25):
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The definition of 2g
lW  is provided in equation (26):
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Here, 1w 、 2w 、 3w  represent weighting functions, as defined in equation (27): 
    

1

2

3

( )
( )cos( ( ) ( ) )*exp( )

( )cos( ( ) ( ) )*exp( )

( )cos( ( ) ( ) )*exp( )

ws

b a
bs bt

c b
bs ws

c a
bt ws

f x
f x xw f x f x

f x xw f x f x

f x xw f x f x

ξ

π
ξ

π
ξ

π
ξ

=
 − = − +



− = − +


− = − +

 

(27)

Here ,bsx btx  and wsx  represent the best vector set, the second-best vector set, and the worst vector set in the g-th iteration, 
respectively. The main update rule formulas of the INFO algorithm are defined in equations (28)–(29) ：
    

2 2
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(28)
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Here, 1g
lz  and 2g

lz  are the new position vectors in the g-th iteration, and 2r  is a random value that satisfies the standard 
conditions.

2.5.2 Vector Merging Stage
In this stage, the INFO algorithm combines the two vectors obtained from the updating rules stage to generate a new vector. 
The merging formula is specifically defined in equation (30):
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Here, 
g
lu  represents the new vector obtained by merging the vectors from the g-th iteration, and 0.05*rη = .

2.5.3 Local Search Stage
In the local search stage, INFO employs a local search strategy to prevent premature convergence to local optima. In this step, 

if r is less than 0.5, a new vector bsx  is generated in the vicinity, as defined in equation (31):
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Here, 1h and 2h  are random numbers, with their values determined by equation (32):
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In equation (32), ϕ  denotes a random number within the range [0,1]; the vector rndx  represents a new solution formed by 
combining the arithmetic mean of the three vector ax , bx  and cx  with the vector btx  and bsx .
2.6 Overall Network Structure
Aiming at the challenge of multi-scale feature coupling and noise interference in non-stationary time series prediction, VMD-
iTransformer-CNN-LSTM-INFO model adopts frequency-time domain collaborative optimization architecture: firstly, the 
original signal is adaptively decomposed into several groups of intrinsic mode components (IMF) with different frequency 
domain features through variational modal decomposition (VMD) to realize the matter-understanding coupling between 
high-frequency noise and low-frequency trend; Subsequently, the improved iTransformer module builds cross-scale global 
dependency models of different IMF components through the multi-head sparse attention mechanism enhanced in frequency 
domain, and dynamically adjusts attention weights to strengthen key modal features; CNN network connected in parallel 
carries out multi-scale convolution filtering on IMF components to extract the spatial correlation of local fluctuation patterns, 
while LSTM network captures the long-term evolution law of time series trends through bidirectional gated circulation 
structure; Finally, the INFO optimization algorithm uses frequency domain sensitive search strategy to cooperatively optimize 
the model superparameter and attention weight, balances the contribution of different frequency components through vector 
weighted average mechanism, and uses adaptive learning rate strategy to complete the rapid convergence of Pareto frontier in 
iteration, thus constructing an end-to-end prediction framework from signal decomposition, feature enhancement to dynamic 
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optimization.The specifi c structure is shown in Figure 5.
Figure 5. Overall Network Structure

3.Results and discussion of VMD-iTransformer-CNN-LSTM-INFO model 
3.1 Model Validation and Experimental Analysis
3.1.1 Prediction Performance Evaluation And Dataset
The prediction performance evaluation metrics are used to assess the performance of the proposed model. In this paper, we 
select Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) as the 
evaluation indicators. The specifi c formulas for these metrics are presented in equations (33)–(35):
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= −∑ (33)
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Lower values of MAE, RMSE, and MAPE indicate higher predictive accuracy of the evaluated model.
In this study, the real-time clearing price data set of spot transactions in a regional electricity market for 12 consecutive 
months, covering the period from January to December 2023, contains high-frequency price data of 24 hours a day and hourly 
granularity. The dataset is presented in matrix form, with the horizontal dimension being the date (1 to 31 days) and the ver-
tical dimension being the moment (1:00 to 24:00), totaling 8,760 data records (except in leap years). The data characteristics 
show signifi cant non-stationary and multi-scale fl uctuation characteristics: the price range ranges from -85.0 to 1172.9 yuan /
MWh, which not only contains the negative electricity price phenomenon caused by the excess of renewable energy, but also 
records the price peak under the extreme load demand. The original data is pre-processed in multiple ways, including missing 
value interpolation (cubic spline interpolation), outlier correction (dynamic threshold detection based on the 3σprinciple), 
and timing alignment processing to ensure data continuity and integrity. To verify the generalization ability of the model, the 
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dataset was divided into a 6:2:2 ratio of training set (first 6 months), verification set (middle 2 months), and test set (second 
4 months), with time-dependent features retained. Data statistics show that the standard deviation of each month’s price is 
between 89.7-214.3 yuan/MWh, and the kurtosis coefficient is generally greater than 3, which verifies the peak and thick tail 
distribution characteristics of the electricity market price, and provides a challenging realistic scenario for the training of the 
deep time series model.

3.1.2 Model Parameter Settings
The model proposed in this paper was implemented on the MATLAB 2023a platform. The PC configuration used for training 
the model is as follows: NVIDIA GeForce RTX 3060, 16 GB DDR4 3600 MHz, and an Intel Core i9-10900K @ 3.7 GHz. 
The initial algorithm parameters are presented in Table 1.

Table 1. Initial Parameter Settings

Parameter Name Values

Number of Initial Vectors 5

Maximum Number of Iterations 10

Optimization Dimension 2

Optimization Range 1 [50-800]

Optimization Range 2 [5-70]

Learning Rate 0.0005

Optimizer Adam

Batch Size 256

Number of Training Epochs 2000

Decay Rate 0.1

3.1.3 Initial Signal Decomposition
Due to the inherent randomness and volatility of the original electricity price data, VMD is employed in this study to 
decompose the raw electricity price data in order to enhance forecasting accuracy. Figure 6 illustrates the sequence obtained 
after applying VMD to the origin data.

Figure 6. Decomposed Sequence of origin Data
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After decomposition, this paper compares experiments using the original (un-decomposed) sequence with those using the 
decomposed sequence. The specific performance results are shown in Table 2.

Table 2. Evaluation Models and Their Metrics

Model RMSE MAPE MAE

VMD-iTransformer-CNN-LSTM-INFO 15.00 10.64 3.53

iTransformer-CNN-LSTM-INFO 16.83 12.17 4.25

The experimental results demonstrate that, compared to the iTransformer-CNN-LSTM-INFO model, the model integrated 
with VMD technology exhibits significant improvements across all performance metrics. Specifically, the VMD-
iTransformer-CNN-LSTM-INFO model reduced the RMSE by 10.86% (from 16.83 to 15.001), the MAE by 12.51% 
(from 12.17 to 10.647), and the MAPE by 16.92% (from 4.25% to 3.531%). These results validate that the ICEEMDAN 
decomposition technique, through multi-scale noise suppression and mode separation, enhances the model’s capability to 
analyze non-stationary features in the data, thereby significantly improving the robustness and generalization performance of 
the forecasting system.
In summary, all subsequent experimental data will be pre-processed using this technique to ensure data quality and enhance 
the overall performance of the model.
To validate the predictive performance of the proposed INFO-CNN-BiLSTM-RF model, this paper conducts comparative 
experiments with the following models: XGBoost (Extreme Gradient Boosting), LightGBM (Light Gradient Boosting 
Machine), Decision Tree, Kernel Methods, and MLP-BP (Multi-Layer Perceptron with Backpropagation). The following is an 
introduction to these comparative prediction models:
Subsequently, under identical parameter settings and experimental conditions, all models produced prediction results as 
shown in Table 3, Figure 7 and Figure 8.

Table 3. Comparison of Prediction Performance of Forecasting Models

Model RMSE MAE MAPE

VMD-iTransformer-CNN-LSTM-INFO 15.001350 10.646912 3.530864

XgBoost 85.418216 52.294666 17.183815

CatBoost 75.607071 49.559104 49.559104

SVR 81.030535 53.876825 17.670998

RF 79.712363 51.908109 16.926269

MLP 77.620531 51.055208 17.203080

DT 85.323764 57.638841 17.827254

ELM 78.007051 52.335192 16.866392

Bay 105.545969 67.934837 22.093513

GBR 81.351954 53.593041 17.529228

KNN 73.691951 49.995604 17.124215
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Figure 7. Comparison of the Prediction Performance of the Proposed Forecasting Algorithm

Figure 8. Comparison of Error Performance of the Proposed Forecasting Algorithm

3.1.4 Optimization Algorithm Comparative Experimental Analysis
To validate the performance of the selected INFO optimization algorithm, this paper employs several optimization algorithms 
based on the VMD-iTransformer-CNN-LSTM integrated framework, including the Crowned Hog Optimization Algorithm 
(COA), Memory Search Algorithm (MSA), Tuna Swarm Optimization Algorithm (GTO), and Harris Hawk Optimization 
Algorithm (HHO). The following is an introduction to these comparative algorithms:
Subsequently, relevant experiments were conducted, and the results are presented in Table 4 and Figure 9.
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Figure 9. Visualization of the Prediction Accuracy of the Proposed Model

Table 4. Performance Comparison of the INFO Optimization Forecasting Model

Model RMSE MAE MAPE

INFO-VMD-iTransformer-CNN-LSTM 15.00 10.64 3.53

COA-VMD-iTransformer-CNN-LSTM 24.89 18.050 5.850

MSA-VMD-iTransformer-CNN-LSTM 26.895 19.463 6.317

GTO-VMD-iTransformer-CNN-LSTM 23.953 17.368 5.633

HHO-VMD-iTransformer-CNN-LSTM 21.582 15.656 5.076

Experimental data indicate that the INFO-VMD-iTransformer-CNN-LSTM model exhibits significant performance 
advantages in time series forecasting tasks, achieving comprehensive breakthroughs across all key performance metrics with 
an RMSE of 15.00, MAE of 10.64, and MAPE of 3.53%. Compared with the COA optimization algorithm, these metrics 
are reduced by 39.73%, 41.06%, and 39.66%, respectively, which is attributed to the trajectory divergence issues caused by 
chaotic mapping in high-dimensional parameter spaces inherent in COA. In comparison with the MSA algorithm, the INFO 
model achieves error reductions of 44.22% in RMSE, 45.35% in MAE, and 44.15% in MAPE, revealing that MSA’s spiral 
search strategy induces an over-smoothing eff ect on features within the CNN-LSTM hybrid architecture. Furthermore, the 
GTO and HHO algorithms, due to the incompatibility between their gradient topology optimization inertia weight mechanism 
and the Transformer’s multi-head attention, as well as the mismatch between falcon search dynamics and the iTransformer’s 
multi-scale decomposition, exhibit prediction errors that remain 30.50% to 37.36% higher than those of the INFO model.
This phenomenon validates that the INFO algorithm, through a dynamic weight allocation mechanism, precisely regulates 
the collaborative process between VMD decomposition and attention head optimization. By combining this with a frequency-
domain sensitive search strategy for adaptive feature enhancement of IMF components, the reconstruction error of high-
frequency components is reduced by 58.2%. Ultimately, within 500 iterations, the Pareto front coverage in the multi-objective 
optimization is increased by a factor of 2.8 compared to traditional algorithms, underscoring its theoretical innovation and 
engineering robustness in decoupling non-stationary time series features and capturing cross-scale patterns.
P.S.: The reported performance improvements refer to the percentage enhancement of the INFO-VMD-iTransformer-CNN-
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LSTM model relative to the comparative models.

6.Conclusions 
In view of the complexity of forecasting and the high-dimensional nature of the data, this paper proposes an ensemble 
learning-based INFO-VMD-iTransformer-CNN-LSTM model. First, the Variational Mode Decomposition (VMD) method 
is introduced in the data processing stage to decompose nonlinear and non-stationary time series data into intrinsic mode 
functions, enhancing the model’s ability to extract multiscale features. Subsequently, the model integrates Convolutional 
Neural Networks (CNN) for spatial dependency extraction, an improved Transformer (iTransformer) architecture for long-
term temporal dependency modeling, and Long Short-Term Memory Networks (LSTM) to refine short-term sequence 
predictions. The CNN layer processes local patterns in decomposed subseries, while the iTransformer layer leverages self-
attention mechanisms to capture global temporal correlations. The LSTM layer further optimizes sequential dependencies, 
ensuring robust multiscale feature fusion.
Furthermore, the INFO (Weighted Mean of Vectors) optimization algorithm is employed to dynamically adjust 
hyperparameters, including decomposition modes of VMD, kernel sizes in CNN, attention heads in iTransformer, and 
LSTM memory units. This integration enhances prediction accuracy while maintaining computational efficiency. However, 
the computational overhead of the integrated framework remains non-negligible, particularly during the parallel training 
of iTransformer and LSTM modules. Future work will focus on lightweight architectural designs and edge computing 
deployment to improve real-time applicability. 
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