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Abstract: With the widespread application of multi-agent systems (MASs) in fi elds such as drone formations, autonomous 
driving, and robotic swarms, achieving effi  cient collaboration and stable motion among agents has become a key research 
focus. This study begins by describing the vertices of agents relative to the formation centroid to enable collision avoidance 
and formation shape tracking control. Using the Lyapunov direct method, a heat-equation-based collective dynamics model 
for multi-agent systems is established, providing stability criteria for the model and a leader-follower algorithm. The model 
enables the transformation from continuous multi-agent systems to discrete systems, completing the cooperative motion 
of real multi-agent systems. Simulation analysis verifi es the eff ectiveness of the proposed model and control strategy. In a 
typical simulation scenario, follower agents achieve consensus with leader agents within approximately 10 seconds, with the 
number of path nodes reduced to just six, zero obstacle collisions, and a computation time of only 49.6 seconds. The proposed 
control method signifi cantly enhances the cooperative effi  ciency and motion stability of multi-agent systems under limited 
information exchange and complex environmental conditions, off ering robust theoretical support for the collaborative control 
of future intelligent systems.
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1. Introduction
In recent years, multi-agent systems (MASs) have been widely applied in various fields such as drone formations, 
autonomous driving, and robotic swarms [1]. Compared to single-agent systems, MASs are more effi  cient and reliable in task 
execution and can accomplish complex and challenging tasks that are diffi  cult or even impossible for single-agent systems [2]. 
When multiple agents perform tasks, they typically achieve the overall objective optimally through local information sharing 
and mutual cooperation [3-4]. Research on the cooperative motion of multi-agent systems provides the necessary theoretical 
foundation for the organization and autonomous coordination control of complex MASs, while also having a profound impact 
on practical applications such as intelligent transportation, robotic swarms, and environmental monitoring.
However, in the control of cooperative motion for MASs, designing an efficient and robust control strategy that enables 
agents to collaborate eff ectively in dynamic environments remains a challenging problem. In particular, complex real-world 
scenarios introduce challenges such as interactions between agents, sensor errors, and environmental disturbances, making the 
control of MASs more intricate. Therefore, optimizing the cooperative motion of MASs while ensuring system stability has 
become a key issue in current research. The diff erential dynamics model, as an important continuous-time control framework, 
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effectively describes the motion behavior of MASs and their interactions. Unlike traditional discrete control methods, the 
differential dynamics model transforms the agents’ motion and control strategies into differential equations, allowing a 
more precise mathematical representation of their dynamic behavior. This model enables the design of cooperative control 
strategies suitable for complex environments, ensuring collaboration and motion consistency among agents in dynamic 
scenarios.
This study builds on the foundation of formation control and system behavior control for MASs, constructing a distributed 
differential dynamics model for cooperative motion control using the Lyapunov method. Based on this model, control 
strategies adaptable to different scenarios are designed, and the effectiveness of the proposed model and control strategies is 
validated through simulation analysis.  

2. Cooperative Motion Formation Path Planning for Multi-Agent Systems
2.1 Formation Control of the Group
The control of group formation behavior is to achieve collision-free movement in multi-agent formation tasks while 
maintaining a specific formation shape [5]. First, multiple agents are organized into a square shape for movement. The model is 
based on a square formation structure f  composed of multiple agents. The definition of the cooperative motion formation is 
shown in Figure 1. In this structure, a set { }1 2, ,i i i

nf f f

 is used to describe the specific position of the agent in the formation 
shape. In this paper, the position is the four corners of the four vertices of the square. A distance parameter d is introduced to 
represent the distance between any two agents in the formation. d allows the agents to maintain a certain distance in the group 
formation, thereby achieving the stability of the group formation.
The kinematics of each agent are assumed to be the same, and { }1 2, ,i i i

np p p

 is used to represent their positions. The outer 
contour of the formation is represented by the intersection points formed by the positions of the agents in the formation. The 
smallest convex polygon that surrounds all agents at the intersection points directly displays the overall shape and size of 
the formation. The formation model can be constructed by combining the formation positions of the agents with the relative 
vertices. The formation optimization variables can be determined by ( ),x t s q′= . The variables in this paper include the 
relative positions of the agents, directional accelerations, and the cumulative deviations between the agents and the target 
states. The positions of the agents and the vertices of the formation are represented by the above variables as follows:

     
( ) [ ]
( ) [ ]

, 1,

, 1,

i i
j j

i i
j j i

p t s rot q p j n

f t s rot q f j n

′= + ∀ ∈

′= + ∀ ∈  （1）

Figure 1 Definition of coordinated movement formation

All these position and orientation data combined form the configuration of motion at a given moment, representing the set of 
all possible positions and orientations. In a multi-agent system, each agent controls its respective position and orientation to 
ensure the entire formation remains consistently stable.
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2.2 Behavior Control of Intelligent Group Systems
To prevent collision and obstacle avoidance issues during the cooperative motion paths of multi-agent systems, this study 
adopts an individual-based Lagrangian modeling framework. The behavior of the group is understood as the result of 
interactions, where individuals attract each other when far apart and repel each other when close. This ensures a safe distance 
is maintained between individuals, accounting for the physical space occupied by each individual. Specifically, individuals 
attract each other at longer distances and repel at shorter distances. Modeling static and dynamic obstacles in the environment 
effectively captures the fundamental motion characteristics of biological groups in nature, ensuring a safe distance between 
individuals to avoid collisions during movement. In the collective motion of intelligent groups, the trajectory generated by the 
dynamics model of any individual serves as a reference trajectory for other agents to follow or track. This approach ensures 
coordinated path tracking and maintains orderly movement within the entire intelligent group system.

3. Construction of differential dynamics model for multi-agent coordinated motion
3.1 Multi-agent distribution of Lyapunov method
In the study of multi-agent systems, stability analysis is crucial. Lyapunov indirection is to introduce Lyapunov functions 
with generalized energy properties, and then analyze the monotonicity of the function by means of derivation, and then judge 
its stability. Suppose there is a nonlinear system of equations: In a system where the position, velocity, and acceleration 
of a multi-agent are jointly described, so that ( ) 0ef x =  satisfies in the neighborhood δ  of the equilibrium point ex  . If a 
continuously differentiable positive definite function ( )V x  defined in the neighborhood δ  of ex  can be found, and satisfies in 
the neighborhood δ  of the equilibrium point x :
     

( ) 0,V dxV x x
x dt

δ∂
= < ∈
∂



 
（2）

This equilibrium point is called a globally asymptotically stable equilibrium point, which means that no matter how far the 
initial state of the system is from the equilibrium point, the system will eventually tend to this equilibrium point as time 
evolves.

3.2 Modeling of multi-agent systems
3.2.1 Modeling principles and ordinary differential models
Taking the heat equation as an example, the position of the agent can be represented by the state variable ( ),u t a , where the 
real part represents the horizontal coordinate and the imaginary part represents the vertical coordinate. There are multiple 
agents distributed in a two-dimensional plane. In order to achieve the formation goal of the multi-agent system in the plane, 
the multi-agent system constructed with an ordinary differential model usually uses ( ),x y  to represent the position of each 
agent. For the agents in the plane, the consistency control law is:

      
( )

i

i i j j i
j

x a x x
δ∈

= −∑

 
（3）

      
( )

i

i i j j i
j

y a y y
δ∈

= −∑

 
（4）

Each agent can only exchange information with other agents within its communication range, and these interactive agents 
constitute iδ . i ja  represents the connection weight between agents i  and j , reflecting the intensity of information interaction 
between the two agents 

[6]
.

3.2.2 Partial differential equation modeling and collective dynamics model
The originally discrete multi-agents are mapped to continuous space. By introducing the state variable ( ) ( ) ( ), , ,u t a x t a iy t a= + ,  
the real part is used to represent the horizontal coordinate position of the agent, and the imaginary part represents the vertical 
coordinate position

[7-8]
. Collective differential dynamics model of multi-agents:

     ( ) ( ) ( ), , ,d
t a aa aau t a k u t a u t a = −   （5）
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spatial distribution; k represents the control gain, which determines the response intensity of the system to the deviation; 
( )du a  represents the expectation function, which can be set to achieve complex formations in collective formation motion 

tasks. The cooperative motion of a multi-agent system is illustrated in Figure 2. By adjusting the desired function, the multi-
agent system can be configured into various specific shapes. Notably, in this study, the partial differential equation modeling 
and collective dynamics model frequently employ a leader-follower algorithm for multi-agent formations. This algorithm 
enables precise positioning within the system, with predesignated leader drones equipped with advanced navigation and 
mapping devices to acquire global information and continuously adjust their direction, position, and speed. Other agents 
move solely based on the leader’s information, achieving the cooperative motion of the entire multi-agent system.

Figure 2 Coordinated motion of a multi-agent system

4. Simulation analysis and result discussion
4.1 Simulation platform and experimental setting
This study used a simulation platform based on MATLAB/Simulink for experiments. Table 1 shows the experimental 
environment, which lists the specific information of the computer hardware configuration and software environment used for 
simulation.

Table 1 Experimental environment
Project Configuration and description

Hardware 
Configuration

Intel Core i7-10700K, 8 cores and 16 threads, 
3.8 GHz Intel Core i7-10700K, 8 cores and 16 threads, 3.8 GHz

32 GB DDR4 3200 MHz 32 GB DDR4 3200 MHz

NVIDIA GeForce RTX 3060 12GB NVIDIA GeForce RTX 3060 12GB

1TB NVMe SSD 1TB NVMe SSD

Windows 10 Pro 64-bit Windows 10 Pro 64-bit

Software 
Configuration

MATLAB R2023b, Simulink 2023b MATLAB R2023b, Simulink 2023b

Control System Toolbox, Optimization Toolbox, 
Reinforcement Learning Toolbox, ADP Toolbox

Control System Toolbox, Optimization Toolbox, Rein-
forcement Learning Toolbox, ADP Toolbox

Simulink for multi-agent system modeling, 
Stateflow for control flow and logic design

Simulink for multi-agent system modeling, Stateflow for 
control flow and logic design

MATLAB, Simulink (graphical modeling) MATLAB, Simulink (graphical modeling)

Simulation 
Settings

0.01 s 0.01 s

50 s 50 s

x

(xN,yN)

(x0,y0)

Leader
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4.2 Analysis of multi-agent cooperative motion trajectory
It can be seen that in the differential dynamics model of cooperative motion of agents using the proposed Lyapunov function 
method, the system states of all agents can reach a consensus with the leader node after about 10 seconds, as shown in Figure 
3. Figure 3 (a) shows the position motion state of the agent. It can be seen that at the initial moment, the x1-x0 states of 
agents with different numbers (including leaders and followers) have different starting values; at 4 seconds, x1 is at -0.18, 
x2 is at -0.20, x3 is at -0.22, and x0 is at 0.13, reflecting the initial differences in the states of the four individual agents. As 
time goes on, at a time node of about 9.5 seconds, the position motion states of the four individual agents tend to a common 
value of 0, and the state of the leader x0 has completely served as the reference target state of other agents x2-x4. Figure 3 
(b) shows the directional motion state of the agent. Similarly, the directional motion state values of each agent are different 
at the beginning. At 3 seconds, x1 is in the direction of -0.19, x2 is in the direction of -0.31, x3 is in the direction of -0.39, 
and x0 is in the direction of 0.20, which also shows the initial difference in the states of the four individual agents. As time 
gradually increases from 0 seconds, at about 7.8 seconds, the directional motion state curves of all agents gradually converge 
to the same, indicating that the system states of all agents reach a consensus with the leader node at this point in time, further 
proving the effectiveness of collaborative tracking.

Figure 3 Trajectories of four individual agents over time
(a) Position motion state trajectory of the agent

(b) Trajectory of the directional motion state of the agent
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Figure 4 is a comprehensive evolution of the states of four individual agents, showing the overall situation of the agent 
acceleration of all agents (including leaders and followers) and the cumulative deviation of the agent from the target state. 
As shown in Figure 4, it can be seen that at the initial moment of the agent acceleration, the x1-x0 states of agents with 
different numbers (including leaders and followers) have different starting values; at 3 seconds, the acceleration change rate 
of each agent may be large and different. x1 is -0.16 acceleration, x2 is -0.22 acceleration, x3 is -0.25 acceleration, x0 is 
at 0.19 acceleration, and when it finally reaches 8.2 seconds, the acceleration change rate tends to 0, ensuring the stability 
and coordination of the agent’s movement. It reflects the initial differences in the states of the four individual agents. Then 
observe the cumulative deviation between the agent and the target state. In the initial stage, the distance between each 
agent and the target state is different. As time goes by, the agent keeps approaching the target state. At about 10 seconds, 
the cumulative deviation gradually decreases, and the desired collaborative state is achieved, indicating that all agents have 
successfully reached a state consensus. The effectiveness and stability of the method in this paper are demonstrated.

Figure 4. The evolution of the states of four individual agents

4.3 Comparison of multi-agent collaborative motion performance
In order to further verify the motion performance of each agent in the multi-agent system of this method, this paper selects 
three common traditional PID control methods, consensus algorithms, and distributed control methods for comparative 
analysis. Table 2 shows the performance comparison of the four methods in a dynamic warehousing environment. It can be 
seen that the multi-agent collaborative motion performance of the traditional PID control method is poor, and it cannot cope 
well with the complex dynamic adjustment when the formation shape changes. The number of path nodes is 26 nodes, the 
number of obstacle collisions is 16 times, the number of turning points is 12 times, and the calculation time is 64.5 seconds. 
In contrast, the consistency algorithm and the distributed control method have improved in some indicators, but there are still 
shortcomings. Although the consistency algorithm reduces the number of path nodes by 18 and the number of collisions with 
obstacles by 3 times, the calculation time of 59.2 and the number of path turning points of 11 are still relatively high. The 
distributed control method is further optimized in the number of path nodes (15) and the number of collisions with obstacles 
(2 times). This is because the distributed control method uses graph theory to describe the communication topology between 
multi-agents to complete the collaborative control of multi-agents, but it is also slightly lower than the traditional method. 
However, the proposed method showed significant advantages in all indicators. The number of path nodes was reduced to 
only 6, the number of path turning points was kept at a reasonable 5, and no obstacle collisions occurred, which greatly 
improved the safety and efficiency of the operation. The calculation time was also shortened to 49.6 seconds, which is better 
than all other methods. The proposed method performed best in the dynamic environment method, with higher efficiency and 
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safety of moving group path planning, and is a better collaborative strategy.
Table 2 Performance comparison of four methods in dynamic storage environment

Method Path Node Collision frequency Turning Points Calculation time /s

Traditional PID control method 26 8 12 64.5

Consistency algorithm 18 3 11 59.2

Distributed control method 15 2 7 58.6

This method 6 0 5 49.6

5. Conclusion
This study employs a Lyapunov indirect method to establish a multi-agent system model based on partial differential 
equations (PDEs). Initially, the system’s dynamic obstacle avoidance and real-time response capabilities in formation tracking 
were not provided. Subsequently, the stability of the system was determined by analyzing the eigenvalue distribution of the 
linear system state equation. By mapping the originally discrete multi-agent system into a continuous space using PDEs, the 
control accuracy and efficiency of the cooperative motion system were improved. Simulation results verified the effectiveness 
of the proposed method.
In the trajectory analysis of cooperative motion, the position, direction acceleration, and cumulative deviation of four 
individual agents relative to the target stabilized within 9.5 seconds, 7.8 seconds, 8.2 seconds, and 10 seconds, respectively. 
The motion states converged toward a common value of 0, achieving overall stability through unified cooperative changes. 
Moreover, no obstacle collisions occurred, and the computation time of 49.6 seconds was significantly shorter compared to 
three other methods. This demonstrates the method’s high efficiency and quality in achieving cooperative tracking, formation, 
and obstacle avoidance behaviors among agents.  
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