Global Risk Attitudes Research: From Climate Change to Vaccination

Authors

  • Yumo Song

DOI:

https://doi.org/10.62177/apemr.v1i5.53

Keywords:

Global Risk Attitudes, Climate Change, Vaccination, Machine Learning, Bibliometric Analysis

Abstract

In recent years, risk challenges have become more intense with the globalization of the economy. As global risk attitudes have a considerable impact on various factors of global risk treatment, research on global risk attitudes has gradually increased in recent years, but there has been little bibliometric analysis, including co-citation analysis, hot topics, detection of unexpected events, and emerging trends. Therefore, this paper uses a combination of conventional bibliometrics and machine learning to address the above questions and to intuitively present hot topics and future research trends in global risk attitude research. It was found that major diseases, behavioral influences between men and women, climate change, experimental inquiry, vaccination, and sexual health were the most popular topics in global risk attitude research. Based on the current status of global risk attitude research, future research could be conducted on the topic of people’s attitudes toward vaccination after COVID-19 infection to explore whether there are new changes in these people’s attitudes toward vaccination. In addition, cluster analysis and burst detection of research themes revealed that vaccine hesitancy remains the most popular research direction in global risk attitude research at present. It is also very forward-looking to conduct research based on vaccine hesitancy as one of the top 10 health threats facing the world.

Downloads

Download data is not yet available.

References

Bhatnagar, S., & Sharma, D. (2022). Evolution of green finance and its enablers: A bibliometric analysis. Renewable and Sustainable Energy Reviews, 162, 112405. DOI: https://doi.org/10.1016/j.rser.2022.112405

Bickerstaff, K. (2004). Risk perception research: socio-cultural perspectives on the public experience of air pollution. Environment International, 30(6), 827-840. DOI: https://doi.org/10.1016/j.envint.2003.12.001

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(Jan), 993-1022.

Bord, R. J., Fisher, A., & Robert, E. O. (1998). Public perceptions of global warming: United States and international perspectives. Climate Research, 11(1), 75-84. DOI: https://doi.org/10.3354/cr011075

Boykoff, M. T., & Boykoff, J. M. (2004). Balance as bias: Global warming and the US prestige press. Global Environmental Change, 14(2), 125-136. DOI: https://doi.org/10.1016/j.gloenvcha.2003.10.001

Brulle, R. J., Carmichael, J., & Jenkins, J. C. (2012). Shifting public opinion on climate change: an empirical assessment of factors influencing concern over climate change in the US, 2002–2010. Climatic Change, 114(2), 169-188. DOI: https://doi.org/10.1007/s10584-012-0403-y

Chen, Y., Zhang, H., Liu, R., Ye, Z., & Lin, J. (2019). Experimental explorations on short text topic mining between LDA and NMF based Schemes. Knowledge-Based Systems, 163, 1-13. DOI: https://doi.org/10.1016/j.knosys.2018.08.011

Cohen, M. S., Chen, Y. Q., McCauley, M., Gamble, T., Hosseinipour, M. C., Kumarasamy, N., ... & Fleming, T. R. (2016). Antiretroviral therapy for the prevention of HIV-1 transmission. New England Journal of Medicine, 375(9), 830-839. DOI: https://doi.org/10.1056/NEJMoa1600693

Corner, A., Markowitz, E., & Pidgeon, N. (2014). Public engagement with climate change: the role of human values. Wiley Interdisciplinary Reviews: Climate Change, 5(3), 411-422. DOI: https://doi.org/10.1002/wcc.269

De las Cuevas, C., Peñate, W., & Sanz, E. J. (2014). Risk factors for non-adherence to antidepressant treatment in patients with mood disorders. European Journal of Clinical Pharmacology, 70(1), 89-98. DOI: https://doi.org/10.1007/s00228-013-1582-9

Della Corte, V., Del Gaudio, G., Sepe, F., & Nevola, G. (2021). Kosher meat and production issues: A bibliometric analysis. Trends in Food Science & Technology, 116, 749-754. DOI: https://doi.org/10.1016/j.tifs.2021.08.021

Dietz, T., Fitzgerald, A., & Shwom, R. (2005). Environmental values. Annu. Rev. Environ. Resour, 30, 335-372. DOI: https://doi.org/10.1146/annurev.energy.30.050504.144444

Dohmen, T., Falk, A., Huffman, D., Sunde, U., Schupp, J., & Wagner, G. G. (2011). Individual risk attitudes: Measurement, determinants, and behavioral consequences. Journal of the European Economic Association, 9(3), 522-550. DOI: https://doi.org/10.1111/j.1542-4774.2011.01015.x

Dunlap, R. E. (1998). Lay perceptions of global risk: Public views of global warming in cross-national context. International Sociology, 13(4), 473-498. DOI: https://doi.org/10.1177/026858098013004004

Egan, P. J., & Mullin, M. (2012). Turning personal experience into political attitudes: The effect of local weather on Americans’ perceptions about global warming. The Journal of Politics, 74(3), 796-809. DOI: https://doi.org/10.1017/S0022381612000448

Eiser, J. R. (2004). Public perception of risk. Report Prepared for Foresight Office of Science and Technology.

Fishbein, M., & Ajzen, I. (2011). Predicting and changing behavior: The reasoned action approach. Psychology Press. DOI: https://doi.org/10.4324/9780203838020

Guo, L., Cheng, J., & Zhang, Z. (2022). Mapping the knowledge domain of financial decision making: A scientometric and bibliometric study. Frontiers in Psychology, 13. DOI: https://doi.org/10.3389/fpsyg.2022.1006412

Guo, Y. M., Huang, Z. L., Guo, J., Guo, X. R., Li, H., Liu, M. Y., ... & Nkeli, M. J. (2021). Bibliometric analysis and visualization of blockchain. Future Generation Computer Systems, 116, 316-332. DOI: https://doi.org/10.1016/j.future.2020.10.023

Higgins, J. (2012). Convincing evidence from controlled and uncontrolled studies on the lipid‐lowering effect of a statin. Cochrane Database of Systematic Reviews, (12). DOI: https://doi.org/10.1002/14651858.ED000049

Hornsey, M. J., Harris, E. A., & Fielding, K. S. (2018). The psychological roots of anti-vaccination attitudes: A 24-nation investigation. Health Psychology, 37(4), 307. DOI: https://doi.org/10.1037/hea0000586

Kahan, D. M., Peters, E., Wittlin, M., Slovic, P., Ouellette, L. L., Braman, D., & Mandel, G. (2012). The polarizing impact of science literacy and numeracy on perceived climate change risks. Nature Climate Change, 2(10), 732-735. DOI: https://doi.org/10.1038/nclimate1547

Kang, H. J., Kim, C., & Kang, K. (2019). Analysis of the trends in biochemical research using Latent Dirichlet Allocation (LDA). Processes, 7(6), 379. DOI: https://doi.org/10.3390/pr7060379

Kellstedt, P. M., Zahran, S., & Vedlitz, A. (2008). Personal efficacy, the information environment, and attitudes toward global warming and climate change in the United States. Risk Analysis: An International Journal, 28(1), 113-126. DOI: https://doi.org/10.1111/j.1539-6924.2008.01010.x

Liñeira, R., & Henderson, A. (2021). Risk attitudes and independence vote choice. Political Behavior, 43(2), 541-560. DOI: https://doi.org/10.1007/s11109-019-09560-x

Liu, L., & Treich, N. (2021). Optimality of winner-take-all contests: the role of attitudes toward risk. Journal of Risk and Uncertainty, 63(1), 1-25. DOI: https://doi.org/10.1007/s11166-021-09355-8

Liu, X., Zhao, S., Tan, L., Tan, Y., Wang, Y., Ye, Z., ... & Wang, G. (2021). Frontier and hot topics in electrochemiluminescence sensing technology based on CiteSpace bibliometric analysis. Biosensors and Bioelectronics, 113932. DOI: https://doi.org/10.1016/j.bios.2021.113932

Lorenzoni, I., & Pidgeon, N. F. (2006). Public views on climate change: European and USA perspectives. Climatic Change, 77(1), 73-95. DOI: https://doi.org/10.1007/s10584-006-9072-z

Lorenzoni, I., Nicholson-Cole, S., & Whitmarsh, L. (2007). Barriers perceived to engaging with climate change among the UK public and their policy implications. Global Environmental Change, 17(3-4), 445-459. DOI: https://doi.org/10.1016/j.gloenvcha.2007.01.004

McCright, A. M., & Dunlap, R. E. (2011). Cool dudes: The denial of climate change among conservative white males in the United States. Global Environmental Change, 21(4), 1163-1172. DOI: https://doi.org/10.1016/j.gloenvcha.2011.06.003

Moher, D. (2009). Liberati A, Tetzlaff J, Altman DG, Group TP. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The Prisma Statement. PloS Med, 6(7), e1000097-6. DOI: https://doi.org/10.1371/journal.pmed.1000097

Myers, T. A., Nisbet, M. C., Maibach, E. W., & Leiserowitz, A. A. (2012). A public health frame arouses hopeful emotions about climate change. Climatic Change, 113(3), 1105-1112. DOI: https://doi.org/10.1007/s10584-012-0513-6

Ozbek, M. A., Yardibi, F., Genç, B., Basak, A. T., Tahta, A., & Akalan, N. (2022). Pediatric brain tumors: a bibliometric analysis. Child's Nervous System, 1-10. DOI: https://doi.org/10.1007/s00381-022-05506-7

Palmgren, C. R., Morgan, M. G., Bruine de Bruin, W., & Keith, D. W. (2004). Initial public perceptions of deep geological and oceanic disposal of carbon dioxide. DOI: https://doi.org/10.1021/es040400c

Palutikof, J. P., Agnew, M. D., & Hoar, M. R. (2004). Public perceptions of unusually warm weather in the UK: impacts, responses, and adaptations. Climate Research, 26(1), 43-59. DOI: https://doi.org/10.3354/cr026043

Poortinga, W., & Pidgeon, N. F. (2004). Trust, the asymmetry principle, and the role of prior beliefs. Risk Analysis: An International Journal, 24(6), 1475-1486. DOI: https://doi.org/10.1111/j.0272-4332.2004.00543.x

Poortinga, W., Bickerstaff, K., Langford, I., Niewöhner, J., & Pidgeon, N. (2004). The British 2001 foot and mouth crisis: a comparative study of public risk perceptions, trust and beliefs about government policy in two communities. Journal of Risk Research, 7(1), 73-90. DOI: https://doi.org/10.1080/1366987042000151205

Poortinga, W., Whitmarsh, L., Steg, L., Böhm, G., & Fisher, S. (2019). Climate change perceptions and their individual-level determinants: A cross-European analysis. Global Environmental Change, 55, 25-35. DOI: https://doi.org/10.1016/j.gloenvcha.2019.01.007

Rios-González, C. M. (2017). A bibliometric analysis of global research in Oropouche. Travel Medicine and Infectious Disease, 19, 61-61. DOI: https://doi.org/10.1016/j.tmaid.2017.08.010

Robson, A., & Samuelson, L. (2022). The evolution of risk attitudes with fertility thresholds. Journal of Economic Theory, 205, 105552. DOI: https://doi.org/10.1016/j.jet.2022.105552

Roozenbeek J, Schneider C R, Dryhurst S, et al. Susceptibility to misinformation about COVID-19 around the world[J]. Royal Society open science, 2020, 7(10): 201199. DOI: https://doi.org/10.1098/rsos.201199

Sepahvand, M. H., & Shahbazian, R. (2021). Intergenerational transmission of risk attitudes in Burkina Faso. Empirical economics, 61(1), 503-527. DOI: https://doi.org/10.1007/s00181-020-01857-9

Whitmarsh L. Scepticism and uncertainty about climate change: Dimensions, determinants and change over time[J]. Global environmental change, 2011, 21(2): 690-700. DOI: https://doi.org/10.1016/j.gloenvcha.2011.01.016

Zhang, X., Peng, F., & Long, M. (2018). Robust coverless image steganography based on DCT and LDA topic classification. IEEE Transactions on Multimedia, 20(12), 3223-3238. DOI: https://doi.org/10.1109/TMM.2018.2838334

Downloads

How to Cite

Song, Y. (2024). Global Risk Attitudes Research: From Climate Change to Vaccination. Asia Pacific Economic and Management Review, 1(5), 18–39. https://doi.org/10.62177/apemr.v1i5.53

Issue

Section

Articles