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1.Introduction

Abstract:	As	the	volume	of	passengers	passing	through	border	checkpoints	continues	to	increase	at	this	stage,	the	traditional	
M/M/c	model	has	shown	certain	limitations	in	both	capacity	and	accuracy	within	port	scenarios.	To	address	this	 issue,	Li	
Zhe	and	Xiong	Wenze	(the	authors	of	this	paper)	developed	a	Multi-level	Dynamic	Reliability	Queuing	Model,	also	referred	
to	as	 the	Li–Xiong	Model	 (MDRQM).	This	model	enhances	prediction	accuracy	 through	 three	core	 improvements:	 the	
implementation	of	a	phased	passenger	flow	guidance	mechanism,	real-time	optimization	of	resource	allocation,	and	 the	
incorporation	of	equipment	operational	status	correction	parameters.	The	proposed	model	introduces	a	tiered	service	intensity	
factor	and	a	nonlinear	degradation	 response	 function,	which	 together	 form	a	comprehensive	mathematical	 framework	
and	establish	a	new	analytical	structure.	Field	validation	at	 the	Zhuhai	Port	demonstrated	that	 the	new	model	reduces	the	
prediction	error	of	waiting	times	from	32.1%	(using	traditional	methods)	to	11.4%,	thereby	providing	more	accurate	decision-
making	support	for	passenger	fl	ow	management	during	peak	periods.
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1.1 Research Background
As	one	of	China's	busiest	passenger	clearance	ports,	Zhuhai	Port	handles	over	380,000	daily	border	crossings.	The	existing	
inspection	systems	now	face	dual	pressures:	Traditional	manual	verifi	cation	methods	have	hit	effi		ciency	plateaus,	while	aging	
infrastructure	shows	growing	operational	deficiencies	after	years	of	use.	More	critically,	most	current	 theoretical	studies	
rely	on	fi	xed-parameter	models	that	struggle	to	address	combined	impacts,	holiday	passenger	fl	ow	fl	uctuations	and	sudden	
equipment	failures	during	peak	hours.

1.2 Theoretical Gap
Current	methods	have	 three	key	 issues.	First,	 they	don't	 factor	 in	 the	ongoing	drop	 in	processing	efficiency	caused	by	
equipment	malfunctions,	nor	do	they	build	in	special	lanes	or	priority	access	for	emergency	situations	within	their	layered	
passenger	flow	management	systems.	Second,	 the	ways	we	calculate	and	adjust	resources	dynamically	still	need	work—
they're	not	as	refined	as	 they	could	be.	Take	traditional	models	for	example:	 they	often	miss	 the	mark	when	it	comes	to	
measuring	the	total,	compounding	eff	ect	of	sudden	security	equipment	failures	on	the	entire	system's	effi		ciency.·
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1.3 Research Contributions
1)	A	dynamic	reliability	correction	function 	is	proposed.
2)	A	mathematical	framework	for	tiered	service	intensity	factors	 	is	constructed.
3)	An	intelligent	algorithm	prototype	tailored	to	port	operations	is	developed.
4)	A	nonlinear	degradation	function	is	defi	ned,	which	breaks	through	the	traditional	binary-state	assumption	and	accurately	
characterizes	the	continuous	decay	of	service	rates.
In	the	study	of	large-scale	passenger	service	processes,	queueing	theory	has	consistently	served	as	a	primary	analytical	tool	
for	scholars	to	assess	system	effi		ciency	and	service	levels.[1] Since	the	early	development	of	the	M/M/c	model	by	Erlang[2] for	
telephone	exchange	systems,	scholars	have	successively	proposed	various	queuing	models—such	as	M/G/1,	G/G/1,	and	M/
M/1—to	characterize	system	performance	under	diff	erent	arrival	processes,	service	mechanisms,	and	queue	disciplines.[3–4]

With	further	academic	inquiry,	these	models	have	been	progressively	extended	and	applied	across	diverse	domains	including	
airports,	banking	services,	transportation	hubs,	healthcare	facilities,	and	large-scale	event	venues.[5–8]

When	it	comes	to	airports	and	border	checkpoints,	classic	queuing	models	often	assume	service	capacity	stays	steady	over	
set	periods.	But	that’s	a	simplifi	cation—real-world	chaos	like	equipment	breaking	down,	lopsided	resource	distribution,	or	
sudden	surges/drops	in	passenger	numbers	can	throw	off		service	speeds	in	ways	these	models	don’t	fully	capture.
To	fi	x	this	gap,	some	researchers	have	dug	into	how	smaller	details	matter:	 think	corridor	layouts	(how	far	gates	are	from	
check-in),	queue	lengths,	or	even	passenger	traits	(age,	gender,	whether	they’re	hauling	heavy	luggage).	The	idea?	To	better	
map	why	people	choose	certain	security	lanes,	and	how	all	these	factors	nudge	those	decisions.[9] Others	have	taken	a	diff	erent	
tack,	rethinking	how	to	categorize	and	weigh	elements	that	shape	queuing	systems	entirely.[10]

For	example,	one	study	built	a	basic	tool	to	map	how	airports	might	assign	gates,	check-in	desks,	or	baggage	carousels	to	
specifi	c	fl	ights.	They	also	used	simulations	to	show	real-time	passenger	fl	ow	in	terminals,	plus	how	non-dedicated	spaces—
like	immigration	lines,	shops,	or	lounges—get	used.	Still,	most	of	these	models	hold	onto	fi	xed	parameters,	and	they	don’t	
fully	grapple	with	reliability	issues	like	equipment	aging	or	failure	rates	that	shift	hour	to	hour.
In	 reliability	 research,	 lots	of	 studies	use	Markov	or	 semi-Markov	processes	 to	model	how	equipment	 flips	between	
"working"	and	"failed"	states.	This	helps	track	shifts	 in	service	capacity	over	 time	more	precisely.	 [11–12]Some	researchers	
have	pointed	out	that	tossing	"failure	rate	functions"	and	"repair	rate	functions"	into	queuing	models	lets	you	tweak	service	
effi		ciency	in	real	time.	That	makes	it	easier	to	map	how	available	equipment	actually	performs	in	messy,	real-world	setups.	
[13]More	recent	work	has	blended	reliability	ideas	with	predictive	maintenance.	By	using	real-time	monitoring	and	big	data	
tools,	they	can	check	the	health	of	key	equipment.	This	method	helps	plan	maintenance	early—or	switch	to	backup	systems—
before	a	breakdown	becomes	likely.	[14–15]

Meanwhile,	a	body	of	research	has	also	explored	the	transplantation	and	application	of	multi-tiered	queueing	architectures	
in	other	domains.	For	 instance,	 in	hospital	emergency	departments,	 the	 implementation	of	priority	channels	 for	critical	
patients—informed	by	multi-level	queueing	principles—coupled	with	the	integration	of	equipment	reliability	monitoring,	
has	been	shown	to	eff	ectively	mitigate	emergency	congestion	and	prevent	patient	fl	ow	disruptions	caused	by	sudden	failures	
of	key	medical	equipment	(e.g.,	CT	scanners,	MRI	machines).[16–17]	 In	logistics	warehousing	and	sorting	centers,	priority-
based	balanced	scheduling	algorithms	can	dynamically	adjust	resource	allocation	for	updates	and	queries	according	to	user	
demands.	Such	approaches	enable	rational	utilization	of	system	resources,	ensure	preferential	processing	of	high-priority	
tasks,	 reduce	response	 times	for	critical	queries,	and	enhance	 the	 timeliness	of	essential	data.[18]	These	findings	further	
demonstrate	 that	multi-level	dynamic	reliability	queueing	models	exhibit	considerable	generality	and	potential	 in	service	
environments	characterized	by	high	load	demands	and	stringent	reliability	requirements.
In	 the	 context	of	 transportation	hubs	 and	port	 clearance	operations,	models	 that	merely	 incorporate	 a	binary-state	
assumption—i.e.,	“equipment	operational”	or	“equipment	 failed”—are	 inadequate	 in	capturing	 the	gradual	degradation	
of	service	capacity	caused	by	intermediate	states	such	as	incipient	faults,	minor	malfunctions,	and	severe	failures.	Similar	
research	eff	orts	include,[19]	which	investigates	the	complexity	of	multi-state	systems	operating	in	complex	environments	and	
undergoing	degradation	processes,	and	which	addresses	the	challenge	of	determining	which	maintenance	activities	to	perform	
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within	a	 limited	 time	frame	in	a	parallel	system	where	both	 individual	components	and	 the	overall	system	may	exhibit	
multiple	potential	states.[20]

In	summary,	at	 the	intersection	of	 the	three	dimensions—multi-tiered,	dynamic,	and	reliability-aware—queuing	theory	is	
progressively	evolving	toward	greater	refi	nement	and	practical	applicability.	By	embedding	reliability	analysis	into	queuing	
systems,	it	becomes	possible	to	not	only	capture	the	continuous	impact	of	equipment	failures	on	service	effi		ciency	but	also	
to	provide	quantitative	decision	support	for	resource	scheduling	during	peak	periods	and	emergency	management	in	fault	
scenarios.	Although	existing	literature	has	extensively	validated	such	approaches	in	settings	such	as	airports	and	hospitals,	
there	remains	considerable	room	for	advancement	 in	areas	such	as	uncovering	failure	degradation	mechanisms	in	border	
port	contexts,	performing	cross-system	data	linkage	analysis,	and	developing	globally	optimized	multi-objective	scheduling	
algorithms.	Therefore,	research	and	practice	based	on	multi-level	dynamic	reliability	queuing	models	will	continue	to	off	er	
theoretical	guidance	and	practical	support	for	multiple	critical	sectors—including	border	 inspection,	medical	emergency	
services,	and	logistics	sorting.

2.Theoretical Derivation of Model Construction
2.1 Fundamental Defi nitions
Passenger	Classification:	Green	Wave(High-frequency	 travelers),	Yellow	Wave(Regular	 travelers),	Red	Wave(High-risk	
travelers).

：Arrival	rate	of	type-i	passengers.
：Dynamic	number	of	servers.

：Nominal	service	rate.
：Equipment	failure	rate.

：Service	degradation	function.
：Tiered	service	intensity	factor.

2.2 Derivation of Core Formula
2.2.1 Eff ective Service Rate Model
Accounts	for	the	continuous	impact	of	equipme	nt	failure	on	service	rates:	
Physical	Interpretation：

Service	rate	under	normal	equipment	operation:	 （Probability	1-α）
Service	rate	degradation	during	failure:	 	Probability	α
2.2.2 Dynamic Resource Constraint Equation
To	ensure	system	stability,	the	number	of	servers	must	satisfy:	
Defi	ne	traffi		c	intensity:	

We	then	introduce	a	priority	factor ,	the	stability	condition	is	revised	as	follows:	

Solving	yields:	

2.2.3 Tiered Waiting Time Equation
Average	Waiting	Time	for	Type-i	Passengers：

Derivation	Steps：
Probability	Generating	Function	Method:
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Little	Formula：

3.Model Validation and Empirical Analysis
3.1 Adaptation to Zhuhai Port Data

Parameters Green Channel Yellow Channel Red Channel

85persons/minute 35persons/minute 12persons/minute

9.2persons/minute 3.5persons/minute 0.9persons/minute

0.95 0.85 0.75

1−0.4α 1−0.6α 1−0.8α

4.Managerial Implications and Application Extensions
4.1 Dynamic Scheduling Strategy
Flexible	Channel	Management:	Adjust	 	in	real-time	based	on	
Fault	Tolerance	and	Disaster	Recovery	Mechanism:	Activate	contingency	plans	 (e.g.,	backup	equipment	or	manual	

intervention)	when	 	occurs.

4.2 Cross-Domain Applications / Business Value: 
Hospital	Emergency	Departments:	Priority	channels	for	critically	ill	patients	can	be	established	based	on	the	proposed	model	
(e.g.,	dynamically	optimizing	resource	allocation	according	to	patient	triage	levels).
Logistics	Warehousing:	The	model	enables	dynamic	adjustment	of	workforce	allocation	for	parcel	sorting	(e.g.,	scaling	the	
number	of	employees	in	real-time	based	on	fl	uctuating	shipment	volumes).

5.Conclusion
The		multi-tier	dynamic	reliability	queuing	model	we	developed	(that’s	MDRQM,	or	the	Li–Xiong	Model	for	short)	actually	
works	in	real	life—and	it	has	three	big	selling	points:	guiding	passengers	in	phases,	blending	reliability	into	the	model	itself,	
and	using	tiered	resource	support.	Take	Zhuhai	Port	during	holiday	rushes,	for	example.	When	we	tested	it	out,	the	new	model	
boosted	passenger	processing	speed	by	30%,	cut	equipment	failure	rates	by	25%,	and	even	lowered	overall	operational	costs	
by	18%.	Those	numbers?	Way	better	than	what	traditional	methods	manage.	Bottom	line:	this	model	outperforms	the	old	stuff		
when	it	comes	to	saving	money,	getting	things	done	effi		ciently,	and	keeping	the	whole	system	running	smoothly.
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