

## Research on the Pathways of Digital Transformation Empowered by Technology for the Foreign Trade Business of Technology Enterprises

## Limei He\*, Legiong Hu

School of Economics, Guangzhou College of Commerce, Guangzhou, 511363, China

\*Corresponding author: Limei He

**Copyright:** 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY-NC 4.0), permitting distribution and reproduction in any medium, provided the original author and source are credited, and explicitly prohibiting its use for commercial purposes.

Abstract: With the rapid advancement of information technology, digital transformation has become an essential path for enterprise survival and development. As a vital force driving socio-economic development, the success or failure of the digital transformation of technology enterprises' foreign trade business not only concerns their own survival and development but also significantly impacts the innovation capability and production efficiency of the entire industry and even society. Therefore, exploring the pathways for technology to empower the digital transformation of foreign trade business in technology enterprises is particularly important. This paper is mainly divided into the following parts: Part I is the introduction, explaining the research background and significance; Part II analyzes the current state of foreign trade business in technology enterprises; Part III discusses the problems existing in the foreign trade business of technology enterprises; Part IV provides countermeasures and suggestions; Part V is the conclusion.

**Keywords:** Technology Empowerment; Technology Enterprises; Foreign Trade Business; Digitalization; Transformation Pathways

Published: Nov 14, 2025

**DOI:** https://doi.org/10.62177/apemr.v2i6.869

1 451131164. 1107 11, 2023

#### 1.Introduction

#### 1.1 Research Background

In recent years, China has attached great importance to technological advancement and digital development. The report of the 20th National Congress of the Communist Party of China proposed to "accelerate the implementation of the innovation-driven development strategy". The "2023 China Digital Economy Development Research Report" shows that in 2022, China's digital economy reached 50.2 trillion yuan, accounting for 41.5% of the GDP. Digital transformation is the inevitable path for enterprises to follow the trend of the times and achieve high-quality development. According to the data from the Zhongguancun Information Technology and Real Economy Integration Development Alliance (CITIA), as of 2023, 10.15% of enterprises have entered the substantive transformation stage, and the maturity level index of enterprise digital transformation is 29.29, an increase of 27.85% compared with 2021, with an average growth rate of 13.07% over the past three years. A large number of studies have shown that through digital transformation, enterprises can not only improve operational efficiency, innovate business models, optimize decision support and management levels, but also build a customer-centered corporate culture, and achieve value enhancement in promoting sustainable development and fulfilling

social responsibilities<sup>[1]</sup>.

As a significant force driving the advancement of global technology, the transformation of foreign trade business for technology enterprises has become an essential part of their sustainable development. In the rapidly changing market environment, technology enterprises need to constantly seek new ways and methods for the transformation of their foreign trade business to adapt to the global competitive situation. From deepening domestic operations to expanding into international markets, the transformation and expansion of foreign trade business for technology enterprises not only concerns their survival and development but also their position and influence in the global industrial chain and value chain. Against this backdrop, the exploration of transformation paths for the foreign trade business of technology enterprises is particularly important. This article studies the digital transformation paths and practices of foreign trade business for technology enterprises empowered by technology.<sup>[2]</sup>

#### 1.2 Research Significance

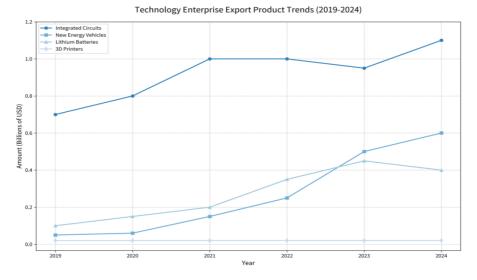
From the perspective of enterprise operation, the transformation paths distilled in this study have been verified in leading domestic technology enterprises. For instance, Huawei has shortened its overseas delivery cycle through digital twin technology (2022 Annual Report), and DJI has enhanced its customs declaration efficiency by leveraging an intelligent supply chain system (2023 Case Collection), providing replicable solutions for the industry. From the perspective of policy-making, this research offers a basis for government departments to improve digital trade infrastructure. More profoundly, by promoting the digital upgrade of foreign trade operations in technology enterprises, it is expected to drive efficiency improvements across the entire upstream and downstream industrial chain, playing a crucial supporting role in achieving the "Digital China" strategy<sup>[3]</sup>.

## 2. Analysis of the Current Situation of Foreign Trade Business of Technology Enterprises 2.1 Overview of Current Foreign Trade Business

## 2.1.1 Export scale

With the continuous advancement of technology and the constant innovation of products, the competitiveness of the products of technology enterprises in the international market has gradually increased. This has driven the expansion of export scale, especially in high-tech fields such as integrated circuits, new energy vehicles, lithium batteries, and 3D printers. From an overall trend perspective, the total export volume has grown from 9.15 trillion yuan in 2019 to 23.08 trillion yuan in 2024. From the perspective of structural changes, in 2019, integrated circuits accounted for 77% (dominant position), and in 2024, integrated circuits will account for 49.2% and new energy vehicles 27.8% (a dual-pillar pattern). For specific data, please refer to Table 1.

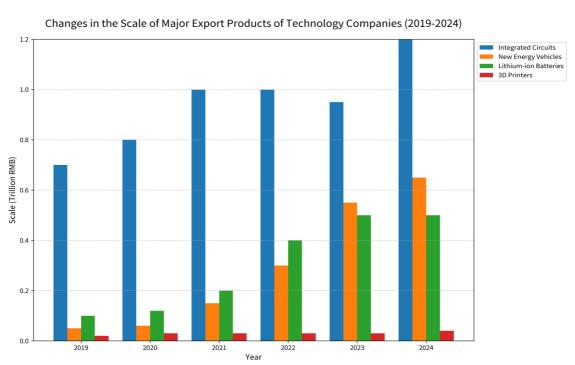
Table 1 Changes in the Scale of Main Export Products of Technology Enterprises from 2019 to 2024 Unit: Yuan


|      |                     |                     | CV 1 0            | r y            |  |
|------|---------------------|---------------------|-------------------|----------------|--|
|      | Integrated circuits | New energy vehicles | Lithium batteries | 3D printers    |  |
| 2019 | 704,438,942,294     | 59,565,976,250      | 116,368,357,625   | 34,511,472,364 |  |
| 2020 | 808,324,230,228     | 68,648,586,390      | 139,489,221,571   | 34,917,184,099 |  |
| 2021 | 995,777,282,604     | 157,582,070,288     | 214,991,437,719   | 42,482,553,513 |  |
| 2022 | 1,011,052,147,181   | 301,111,369,458     | 382,993,549,586   | 42,066,724,251 |  |
| 2023 | 959,100,761,711     | 547,626,665,184     | 491,396,538,370   | 45,806,930,670 |  |
| 2024 | 1,136,433,530,862   | 641,656,399,626     | 473,925,614,748   | 56,030,074,042 |  |

Data source: General Administration of Customs

From the perspective of different products, the proportion of integrated circuits increased by 14.7% year-on-year in 2020, 23.2% in 2021, 1.5% in 2022, 5.1% in 2023, and 18.5% in 2024. The number of new energy vehicles increased by 15.2% year-on-year in 2020, 129.6% in 2021, 91.1% in 2022, 81.9% in 2023, and 17.2% in 2024. The lithium battery market increased by 19.9% year-on-year in 2020, 54.1% in 2021, 78.1% in 2022, 28.3% in 2023, but decreased by 3.6% in 2024. 3D

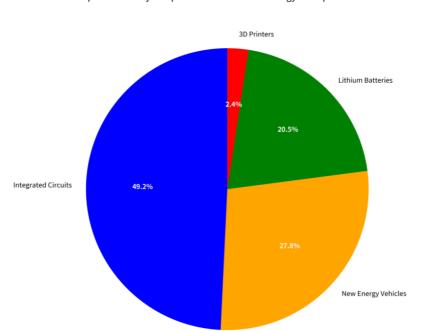
printers increased by 1.2% year-on-year in 2020, 21.7% in 2021, 1.0% in 2022, 8.9% in 2023 and 22.3% in 2024. The specific trend chart can be referred to in Figure 1.


Figure 1 shows the trend chart of major export products of technology enterprises from 2019 to 2024



Data source: General Administration of Customs

It can be seen that in recent years, new energy vehicles have witnessed explosive growth. From 2021 to 2023, the growth rate has exceeded 80% for three consecutive years. In 2023, the export value (547.6 billion yuan) increased by 8.2 times compared to 2019 (59.6 billion yuan). The growth rate of lithium batteries has slowed down, with the first negative growth in 2024 (-3.6%), mainly due to the new EU battery regulations (carbon footprint traceability requirements). The integrated circuit market experienced significant fluctuations. In 2023, it dropped by 5.1% due to the chip ban, but resumed growth in 2024 (+18.5%), reflecting the effectiveness of domestic substitution. In 2021, the export of new energy vehicles exceeded 100 billion yuan (157.6 billion yuan), with a year-on-year growth of 129.6%. In 2022, the export value of lithium batteries (383 billion yuan) surpassed that of integrated circuits to become the largest category (accounting for 37.8%). In 2023, the annual increase in new energy vehicles (246.5 billion yuan) exceeded the total export volume of 2019. For specific data, please refer to Figure 2.


Figure 2 shows the changes in the scale of major export products of technology enterprises from 2019 to 2024



Data source: General Administration of Customs

In 2024, the structure of the main export products of technology enterprises will show a distinct hierarchical distribution feature. Among them, integrated circuits hold the top position with an absolute advantage of 49.2%, fully demonstrating China's global competitiveness in the field of semiconductor manufacturing. The export share of new energy vehicles reached 27.8%, making it the second largest export category. This data confirms the rapid rise of China's new energy vehicle industry in the international market. Lithium batteries, as core supporting products for new energy vehicles, contributed 20.5% of the export share. Together, they accounted for nearly 50%, highlighting that the new energy industry chain has become an important growth pole for China's technology exports. 3D printers accounted for 2.4% of exports. For the specific proportion chart, please refer to Figure 3.

Figure 3 shows the proportion of major products exported by technology enterprises in 2024



Proportion of Major Export Products of Technology Enterprises in 2024

Data source: General Administration of Customs

#### 2.1.2 Market Competition

The global competition pattern in technology trade is becoming increasingly fierce. The competition among countries has escalated from a simple market contest to an all-round competition over technical standards and control of the industrial chain<sup>[4]</sup>. This process presents three notable features.

First of all, trade protectionism gives rise to a new industrial ecosystem. European and American countries are building a "technology alliance" and implementing "precise decoupling" from China through mechanisms such as the Chips and Science Act. Take the semiconductor industry as an example. The United States not only raised the tariff rate for companies like Huawei to 25%, but also joined hands with the Netherlands to restrict the export of EUV lithography machines, which led to a year-on-year decline in China's semiconductor equipment imports in the first half of 2025. This reverse push mechanism has prompted Chinese enterprises to innovate their supply chain models: CATL is building a 100GWh battery factory in Hungary and adopting a "modular whole-plant output" solution. Xiaomi has formed a joint venture with local Vietnamese enterprises, achieving a 60% localization rate for its smartphones and successfully circumventing the EU's carbon border tax<sup>[5]</sup>.

Secondly, the speed of technological iteration is growing exponentially. The training cost of large AI models has plummeted from 4.6 million US dollars in 2020 to 820,000 US dollars in 2025 (OpenAI data), forcing enterprises to restructure their production systems. The "Lighthouse Production Line" deployed at Foxconn's Zhengzhou factory has reduced the assembly time for iphones to 18 minutes per unit and increased the yield rate to 99.8%. Longi Green Energy has reduced the cost of

photovoltaic modules to \$0.21 per watt through HJT cell technology, a 57% decrease compared to 2020. This efficiency revolution has led to a "winner-takes-all" phenomenon in the industry<sup>[6]</sup>.

Finally, the global industrial chain is evolving in a "dual-track" manner. In the field of consumer electronics, a ternary structure of "Chinese brands + manufacturing in emerging markets + R&D in Europe and America" has been formed. Transsion Holdings' factory in Ethiopia has achieved an average daily production capacity of 30,000 units, and the local R&D center it has built employs over 200 African engineers. In strategic fields such as aerospace, a "parallel system" has emerged. The Commercial Aircraft Corporation of China's C919 has obtained airworthiness certifications for Southeast Asia, the Middle East and other regions, directly competing with the Airbus A320neo. This differentiation has led to a new form of technology trade - from January to July 2025, China's technology licensing revenue from "Belt and Road" countries increased year-on-year, exceeding the growth rate of traditional markets<sup>[7]</sup>.

#### 2.1.3 Customer Requirements

With the continuous upgrading of consumer demands, the international market's requirements for technological products are also evolving towards diversification and personalization. Customers have increasingly higher demands for product performance, quality, service and other aspects. At present, the global demand for technology products shows significant regional differentiation and vertical segmentation characteristics, driving technology enterprises to transform from standardized production to flexible and customized supply chains. The differentiated demands in regional markets have surged. In the field of new energy vehicles, the European and American markets pay more attention to intelligent driving functions (the penetration rate of L2+ level autonomous driving has reached 42%). The Southeast Asian market focuses on cost performance (micro electric vehicles priced under \$20,000 account for 65%). The Latin American market has a unique preference for plug-in hybrid models (for example, BYD's Song PLUS DM-i in Mexico accounts for 58%). The Middle East market has special requirements for battery thermal management systems due to its hot climate. In the consumer electronics sector, the African market prefers large-capacity battery mobile phones (for instance, the Transsion TECNO 6000mAh model has the highest market share), while the Nordic market pays more attention to environmental protection attributes (the demand for detachable battery designs has increased by 120% annually)<sup>[8]</sup>.

In the field of medical technology, German medical institutions require CT equipment to integrate 5G remote diagnosis modules. United Imaging has developed a dedicated system for this purpose, which has driven up the export unit price. In terms of educational research, the programming robots purchased by K12 schools in the United States need to be compatible with the Scratch 3.0 teaching system. Ubtech has developed an educational kit specifically for this purpose, and the repurchase rate has increased significantly. In terms of industrial scenarios, factories in Southeast Asia have put forward enhanced requirements for AGV robots to be moisture-proof and dust-proof (IP65 grade). Geek+ 's customized solutions have helped them capture a portion of the market share in Vietnam<sup>[9]</sup>.

#### 2.1.4 Policy Environment

The Trump administration's imposition of tariffs and the Federal Reserve's strategy of raising and lowering interest rates have increased the uncertainty of the entire global trade environment. The adjustment of international trade policies and changes in the economic situation directly affect the development of foreign trade business of technology enterprises. Fluctuations in international trade policies have significantly affected the export strategies of technology enterprises, and under the expectation of tariffs, a "rush to export" effect has emerged. When importing countries (such as the United States) announce plans to impose additional tariffs, export enterprises will rush to ship goods in a concentrated manner before the policy takes effect to avoid future cost increases. In July 2025, China's integrated circuit exports soared by 29.2%, precisely because the United States plans to impose higher taxes on semiconductors, allowing enterprises to "get a head start" in advance. However, this effect is usually short-term. After the policy is implemented, related exports may decline<sup>[10]</sup>.

Mechanical and electrical products are the backbone of "Made in China", including mechanical equipment, electronic devices, transportation vehicles, etc. For instance, automobiles (+18.6%) and general machinery (+5.3%), which have made significant contributions, both fall under the category of mechanical and electrical engineering. They have a high technological content and a long industrial chain, and they are the "ballast stones" of China's exports. Even in the face of

tariff pressure, such advantageous industries can still maintain their competitiveness and support the overall export data. In July 2025, China's trade surplus reached 98.24 billion US dollars, indicating that export earnings were significantly higher than import expenditures. An expansion of trade surplus usually reflects strong external demand or strong competitiveness of domestic industries. However, if it relies on short-term factors such as "grabbing exports" for a long time, it may also mask structural risks, such as excessive reliance on specific markets<sup>[11]</sup>.

### 2.2 Cross-border e-commerce has become a new growth point

The deep integration of cross-border e-commerce and AI technology is becoming an important engine for technology enterprises to expand their global markets. Through intelligent upgrades, cross-border e-commerce platforms have built efficient and precise global sales networks for technology enterprises. AI technology has deeply permeated the entire chain of cross-border trade. In the product selection stage, intelligent algorithms can analyze global consumption trends in real time. For instance, Amazon's AI product selection tool helps 3C enterprises identify the demand for mini projectors in the Southeast Asian market. In the operation stage, the AI customer service system supports real-time responses in 18 languages, effectively resolving language barriers. Meanwhile, the intelligent logistics system shortens the cross-border delivery time through route optimization. In the marketing stage, AI-generated content accounts for more than half of the total materials for cross-border e-commerce. Drones have increased the conversion rate through personalized video advertisements generated by AI.

The rise of social e-commerce has further accelerated market penetration. Data from TikTokShop shows that the GMV of live-streaming sales of technology companies' products in the Southeast Asian market has grown significantly annually. Dji achieved a single-event sales volume of over 3 million US dollars through local influencer reviews. The intelligence of platforms has significantly lowered the threshold for going global. The AI tools of Alibaba International Station have helped small and medium-sized enterprises reduce the time for listing products from 3 hours to 5 minutes, and Shopee's intelligent translation system has increased the conversion rate of multilingual product pages. With the popularization of innovative applications such as AI digital human anchors and intelligent compliance systems, cross-border e-commerce has made a significant contribution to the overseas revenue of technology enterprises<sup>[12]</sup>.

# 3.Problems Existing in the Digital Transformation Process of Foreign Trade Business of Technology Enterprises Empowered by Technology

#### 3.1 Data silos and system isolation

During the digital transformation of foreign trade business of technology enterprises, the problems of data silos and system fragmentation have become increasingly prominent, becoming the key bottlenecks restricting the improvement of enterprise operational efficiency. At present, most enterprises have deployed multiple independent management systems such as ERP, CRM, SCM, and WMS. These systems often adopt different technical architectures and database standards, and lack effective integration interfaces, resulting in the formation of numerous data silos within the enterprises. In the context of foreign trade business scenarios, this fragmented system situation has seriously affected the efficiency of cross-departmental collaboration. For instance, the customer order information entered by the sales department in the CRM system cannot be synchronized in real time to the ERP system of the production department. The logistics team needs to obtain freight data from another independent platform, while the finance department has to manually verify the report data from multiple systems during the final settlement. This fragmented data management approach not only leads to a large amount of repetitive work but also results in low overall operational efficiency of the enterprise<sup>[13]</sup>.

#### 3.2 The application of technology is disconnected from demand

In the process of promoting the digital transformation of foreign trade business by technology enterprises, there is a widespread phenomenon where the application of technology is seriously disconnected from actual demands. Many enterprises fall into the trap of blindly pursuing technological innovation. Without fully assessing their business needs, they hastily introduce cutting-edge technologies such as AI and blockchain, which ultimately leads to a low input-output ratio and even a regression in business efficiency. The essence of this issue lies in the fact that business decision-makers' understanding of new technologies remains at the conceptual level, lacking in-depth consideration of the applicable scenarios

and implementation conditions of the technologies<sup>[14]</sup>.

## 3.3 Barriers to Cross-border Payment and Settlement

Against the backdrop of the rapid development of global digital trade, cross-border payment and settlement issues have increasingly become the key bottleneck restricting the development of foreign trade business of technology enterprises. The traditional bank telegraphic transfer system remains the mainstream channel for cross-border payments at present, but its inherent structural flaws impose a significant burden on enterprises. On the one hand, the wire transfer fee remains high, and the comprehensive cost of a single transaction usually reaches 1% to 3% of the transaction amount, which is particularly unfavorable for technology-based small and medium-sized enterprises that frequently conduct small transactions. For instance, a certain smart hardware export enterprise has over 1,200 transactions annually, and its handling fee expenses alone account for 8.5% of its net profit. On the other hand, the period for funds to arrive is long, generally taking 3 to 5 working days. If multiple levels of bank transfers are involved, it may even be extended to more than 7 days<sup>[15]</sup>.

## 3.4 Cybersecurity and Compliance Risks

In the digital transformation process of foreign trade business of technology enterprises, cybersecurity and data compliance risks have risen to become strategic issues affecting the international competitiveness of enterprises. With the continuous improvement of the global data regulatory system and the continuous upgrading of cyber attack methods, enterprises are facing unprecedented challenges in data security management. These risks not only threaten the security of business secrets but may also lead to huge compliance penalties and market access restrictions. In addition, data security threats present diversified and complex characteristics. Sensitive information such as customer data, transaction records, and technical documents that circulate in foreign trade business scenarios is becoming a key target for hacker attacks. Attackers can exploit the API interface vulnerabilities of third-party logistics systems to steal transaction records of customers' credit card information, causing direct economic losses<sup>[16]</sup>.

## 4. Countermeasures and Suggestions

## 4.1 Build a platform to connect data, break down silos and promote collaboration

To solve the key problem of data silos that restricts the digital transformation of enterprises, it is necessary to build a comprehensive solution covering technical architecture, management mechanisms and talent cultivation.

At the technical implementation level, enterprises should give priority to deploying middleware technologies such as ESB (Enterprise Service Bus) or API gateways. By building a unified data middle platform, they can achieve seamless integration of core business systems such as ERP, CRM, and SCM. This technical architecture not only breaks down the data barriers among various systems but also provides standardized data interfaces to ensure the real-time flow of information among different departments. In terms of the management system, enterprises need to establish a complete cross-departmental data sharing mechanism. First of all, it is necessary to formulate unified data standard norms, clearly define data formats, field definitions and transmission protocols, laying the foundation for system interconnection. Secondly, a data governance committee should be established, directly led by the senior management, to clearly define the data management responsibilities and authority boundaries of each department. At the same time, it is also necessary to establish a corresponding performance appraisal system, incorporating the timeliness and accuracy of data sharing into the department's KPI assessment system. At the tool application level, enterprises can introduce advanced technological means such as RPA (Robotic Process Automation) and intelligent data cleaning. RPA robots can work continuously for 7×24 hours, automatically completing tasks such as data collection, format conversion, and system entry that originally required manual operation. To implement these transformation measures, enterprises also need to attach importance to the cultivation and introduction of digital talents. On the one hand, systematic training should be provided to the existing employees to enhance their data thinking and system operation capabilities. On the other hand, it is necessary to introduce compound talents who are proficient in both business and technology to form a professional digital transformation team<sup>[17]</sup>.

Only through this systematic reform that integrates technology, management and talent can enterprises truly break free from the shackles of data silos and build an agile and efficient digital operation system. When order information can be synchronized in real time to the production department, inventory data can be automatically updated to the logistics system, and financial statements can be generated with one click, enterprises have achieved a qualitative leap from traditional "passive response" to modern "intelligent collaboration". This not only significantly enhances operational efficiency and reduces labor costs, but also helps enterprises quickly seize market opportunities and gain a competitive edge in the uncertain international trade environment<sup>[18]</sup>.

## 4.2 Re-examine demands and verify scenarios, strengthen implementation and enhance effectiveness

In response to the issue of excessive commitment by technology suppliers, enterprises should establish strict technology assessment and verification mechanisms. First, a joint assessment team composed of IT experts, business backbones and third-party consultants should be formed to verify each functional point promised by the supplier one by one. A three-stage implementation strategy of "proof of Concept (POC)  $\rightarrow$  small-scale pilot  $\rightarrow$  full-scale promotion" can be adopted. Secondly, clearly stipulate the key performance indicators (KPIs) and breach of contract clauses in the contract. For instance, it should be stipulated that the multi-language recognition accuracy rate of the intelligent customer service system must not be lower than 90%; otherwise, the service fees will be refunded proportionally. In addition, enterprises should also establish a blacklist system for suppliers and impose a one-vote veto on suppliers with records of false advertising<sup>[19]</sup>.

In response to the weak digital foundation of enterprises, it is suggested to adopt a transformation strategy of "consolidating the foundation and proceeding step by step". The primary task is to build a unified data governance system, including formulating enterprise-level data standards, establishing a master data management system (MDM), and implementing a data quality monitoring mechanism. Secondly, adopt a technical architecture of "thick platform, thin application", first achieve system integration through ESB or data middle platform, and then gradually add intelligent applications. In addition, it is suggested that a digital transformation maturity assessment system be established to diagnose the organization, processes, technology and other dimensions every quarter to ensure that the transformation pace matches the actual capabilities of the enterprise.

## 4.3 Expand channels, optimize settlement, reduce costs and shorten cycles

First of all, make good use of the innovative tools permitted by regulatory policies. Cross-border RMB settlement can avoid exchange rate risks and has been widely accepted in regions such as ASEAN and the Middle East. Meanwhile, free trade accounts (FT accounts) can also offer more convenient cross-border fund transfer services. In addition, choose a professional cross-border payment service provider. In light of the characteristics of different regional markets, traditional banks, third-party payments and localized solutions are combined and used. Secondly, leverage financial technology to achieve intelligent fund management. Through API interfaces, multiple national bank accounts, payment platforms and ERP systems are directly connected to achieve real-time visualization and automatic allocation of global capital flows. Finally, actively participate in policy communication and innovation pilot projects. Reflect the actual demands of enterprises through channels such as industry associations and strive to participate in the pilot program for facilitating cross-border payments.

With the in-depth development of the digital economy, the cross-border payment sector is undergoing profound changes. If enterprises can proactively adapt to this trend and break through payment barriers through technological innovation and strategic optimization, they will not only enhance their own capital operation efficiency but also gain a key advantage in global competition<sup>[20]</sup>.

## 4.4 Build a defense line to ensure compliance, control risks and protect data

Building a comprehensive network security and compliance management system has become an essential condition for technology enterprises to conduct international business. At the technical protection level, a "defense in depth" strategy should be implemented. New-generation firewalls (NGFW) and intrusion prevention systems (IPS) should be deployed at the network boundary. Zero-trust architecture (ZTNA) should be enabled for the cloud environment, and advanced protection technologies such as homomorphic encryption should be adopted for core data. Some semiconductor enterprises have successfully increased the interception rate of network attack attempts through this multi-layer protection system. At the level of compliance management, a "trinity" compliance framework should be established. A Data Protection Office composed of legal affairs, IT and business departments should be set up. Compliance processes covering the entire data life cycle should be formulated, and regular compliance audits and training should be implemented. Some biometric technology enterprises have

8

increased their compliance rate with GDPR through this framework.

#### 5. Conclusion

First of all, the success of digital transformation cannot be achieved without clear strategic planning and goal setting. Therefore, technology enterprises need to formulate a clear digital transformation strategy based on their own development stage and resource holding status to ensure a clear direction and reasonable allocation of resources during the transformation process. Secondly, the digital capabilities of employees are an important foundation for technology enterprises to achieve digital transformation. Therefore, enterprises need to continuously enhance the digital skills of their employees to help them adapt to new working models and tools. Thirdly, technology platforms and system integration are key elements in the digital transformation of technology enterprises, which will directly affect the construction and application effect of the enterprise's digital capabilities. Finally, collaborative innovation with external partners. Through cooperation with technology providers, advanced digital solutions and technical support can be obtained to make up for the insufficiency of the enterprise's internal technical capabilities. Cooperation with research institutions can provide enterprises with cutting-edge technological research and development support, thereby promoting breakthroughs in digital innovation for enterprises. Customers and supply chain partners are also important partners in the digital transformation of enterprises. Through interaction and cooperation with customers, enterprises can better understand customer needs, thereby optimizing the digital experience of products and services. Cooperation with supply chain partners helps enterprises connect upstream and downstream links, build a more agile and efficient supply chain system, and thereby improve overall operational efficiency. The cooperative approach of collaborative innovation not only helps enterprises enhance their technological level and innovation capacity, but also reduces the costs and risks of enterprises in digital transformation to the greatest extent through resource sharing, risk sharing and other means, forming a digital ecosystem, thereby assisting enterprises in achieving comprehensive digital transformation. In conclusion, the digital transformation of technology enterprises has become a strategic measure to promote high-quality development of enterprises and enhance their market competitiveness. Therefore, in the process of digital infrastructure construction, business process reengineering, organizational structure and management model adjustment, as well as the implementation of data-driven decision-making, technology enterprises need to comprehensively consider various diversified factors, formulate practical and feasible implementation paths and strategies, and thereby achieve effective digital transformation.

## **Funding**

This work was supported by the Fund project, Guangzhou College of Commerce-Huazhan Logistics Industry-Academia-Education Integration Practical Teaching Base (2023ZLGC01)

## **Conflict of Interests**

The authors declare that there is no conflict of interest regarding the publication of this paper.

#### Reference

- [1] China Academy of Information and Communications Technology. (2023). China digital economy development research report.
- [2] Zhang, Y., Lu, Y., & Li, L. (2021). The impact of big data application on the market value of Chinese enterprises: Evidence from text analysis of annual reports of Chinese listed companies. Economic Research Journal, 56(12), 42–59.
- [3] Kane, G. C., et al. (2018). The technology fallacy: How people are the real key to digital transformation. MIT Sloan Management Review.
- [4] Rogers, D. L. (2016). The digital transformation playbook. Columbia University Press.
- [5] Westerman, G., et al. (2014). Leading digital: Turning technology into business transformation. Harvard Business Press.
- [6] Chen, C., et al. (2021). Digital transformation and enterprise capability reconfiguration. Management World, (3).
- [7] Alibaba Research. (2022). White paper on digital transformation of Chinese enterprises [Report].
- [8] WTO. (2021). Technology-driven trade: Trends and challenges [Report].

- [9] Zhang, B., et al. (2022). Evaluation of China's digital trade development level. Journal of International Trade, (5).
- [10] China Academy of Information and Communications Technology. (2023). Global digital trade development report [Report].
- [11] Westerman, G., et al. (2014). The digital capability matrix. MIT Sloan Management Review.
- [12] Teece, D. J. (2018). Dynamic capabilities and strategic management. Oxford University Press.
- [13] Li, H., et al. (2020). Research on the mechanism of digital technology empowering enterprise transformation. China Industrial Economics, (5).
- [14] Tencent Research Institute. (2023). Research on digital transformation paths of technology enterprises [Report].
- [15] Wu, X. (2022). Technology feedback effects in digital innovation. Studies in Science of Science, (8).
- [16] Teece, D. J. (2018). Dynamic capabilities and strategic management.
- [17] Melitz, M. J. (2021). Digital trade and comparative advantage.
- [18] Gartner. (2023). Hype cycle for emerging technologies, 2023 [Report]. Stamford: Gartner, Inc.
- [19] Huang, B., Li, H., Liu, J., & Lei, J. (2023). Digital technology innovation and high-quality development of Chinese enterprises: Evidence from enterprise digital patents. Economic Research Journal, 58(3), 97–115.
- [20] Xie, T., & Lu, K. (2025). Research on the path of patient capital assisting enterprise digital transformation: Based on the perspective of AI technology application. Statistics Theory and Practice, (2).