

The Empowering Effect of Digital Transformation on Corporate ESG Performance: A Case Study of the New Energy Industry

Wenyi Sun*

School of Management, Xi'an Polytechnic University, Xi'an, Shaanxi, 710048, China

*Corresponding author: Wenyi Sun

Copyright: 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY-NC 4.0), permitting distribution and reproduction in any medium, provided the original author and source are credited, and explicitly prohibiting its use for commercial purposes.

Abstract: In the context of the global pursuit of sustainable development, the New Energy industry stands at the forefront of the green transition. Simultaneously, digital transformation (DT) has become a pivotal force reshaping corporate operations. This study investigates the synergistic interplay between these two megatrends, specifically exploring the empowering effect of corporate digital transformation on Environmental, Social, and Governance (ESG) performance within the new energy sector. Grounded in dynamic capability theory and stakeholder theory, this paper constructs a conceptual framework analyzing how DT acts as a technological enabler across the E, S, and G dimensions. Through a qualitative analysis of leading global new energy companies, including contemporary giants, the research identifies three primary pathways of empowerment: 1) Environmental Enhancement through smart energy management, predictive maintenance, and circular economy optimization; 2) Social Empowerment via bolstered occupational health and safety, supply chain transparency, and community engagement; and 3) Governance Improvement by enabling data-driven decision-making, enhancing risk management, and boosting information transparency. The findings reveal that DT is not merely a supportive tool but a transformative force that amplifies the intrinsic sustainability potential of new energy firms. However, the implementation is fraught with challenges, including high upfront costs, data security risks, and the digital skills gap. This paper concludes that a strategic, integrated approach to DT is crucial for new energy companies to fully unlock their ESG potential, thereby securing long-term competitiveness and investor confidence in an increasingly sustainability-oriented market.

Keywords: Digital Transformation; ESG Performance; Corporate Sustainability; New Energy Industry; Dynamic Capabili-

ties; Green Technology **Published:** Oct 26, 2025

DOI: https://doi.org/10.62177/apemr.v2i5.810

1.Introduction

The twin imperatives of the Fourth Industrial Revolution and the global climate crisis are compelling corporations to redefine their strategies. On one hand, the transition to a low-carbon economy has propelled the New Energy industry—encompassing solar, wind, energy storage, and hydrogen—into a strategic pillar for national economies and a focal point for global investment. On the other hand, Digital Transformation (DT), characterized by the integration of technologies like the Internet of Things (IoT), Big Data, Artificial Intelligence (AI), and blockchain, is fundamentally altering business models and operational processes across all sectors.

The convergence of these two trends presents a critical research opportunity. While the new energy industry is inherently "green" in its output, its internal operations and broader value chain are not automatically sustainable or exemplary in their ESG (Environmental, Social, and Governance) performance. ESG has evolved from a niche concern to a mainstream framework for evaluating corporate sustainability and long-term risk, significantly influencing investment decisions, regulatory policies, and consumer preferences^[1].

This paper posits that digital transformation serves as a powerful enabler, or "empowerer," that can significantly augment the ESG performance of new energy companies. It moves beyond the siloed view of technology and sustainability to argue that DT provides the tools and data necessary to translate sustainability ambitions into measurable outcomes. The central research question is: Through what mechanisms does digital transformation empower the ESG performance of firms in the new energy industry?

By employing a theory-based conceptual framework and analyzing practices from leading companies, this study aims to delineate the specific pathways of this empowerment effect. The insights will be valuable for managers in the new energy sector seeking to leverage technology for competitive advantage, for investors assessing corporate sustainability, and for policymakers designing supportive regulatory frameworks.

2. Theoretical Foundation and Literature Review

2.1 Dynamic Capability Theory and Stakeholder Theory

The empowering effect of DT on ESG can be effectively understood through the lens of two complementary theories^[2]:

Dynamic Capability Theory: This theory refers to a firm's ability to integrate, build, and reconfigure internal and external competences to address rapidly changing environments (Teece et al., 1997). Digital transformation is a manifestation of dynamic capabilities. It equips firms with the ability to sense emerging ESG-related risks and opportunities (e.g., through AI-powered regulatory scanning), seize them by developing new sustainable products or processes, and transform their organizational structure to maintain alignment. For a new energy firm, DT enhances its capacity to dynamically manage its environmental footprint, social impact, and governance structures in real-time^[3].

Stakeholder Theory: Proposed by Freeman (1984), this theory argues that corporations must create value for all stakeholders, including employees, customers, suppliers, communities, and the environment, not just shareholders. ESG is the operationalization of stakeholder theory. Digital transformation provides the mechanisms to better identify, engage, and respond to diverse stakeholder concerns. For instance, blockchain can ensure supply chain transparency for ethically conscious consumers, while digital platforms can facilitate more effective communication with local communities.

2.2 The Intersection of Digital Transformation and ESG

Existing literature has begun to explore the DT-ESG nexus, though industry-specific deep dives remain limited. Prior research has generally found a positive correlation between corporate digitalization and ESG ratings at a macro level. Studies suggest that DT can improve resource efficiency, optimize corporate governance, and enhance information disclosure. However, the "how" and "why"—the specific causal mechanisms and their application in a mission-critical industry like new energy—require further elaboration. This paper seeks to fill this gap by moving from correlation to causation, detailing the operational pathways through which empowerment occurs^[4].

3.Digital Transformation as an Enabler for ESG in the New Energy Industry

The following sections dissect the empowering effect across the three pillars of ESG.

3.1 Empowering Environmental (E) Performance

The core environmental mission of new energy companies is amplified by DT, moving beyond clean energy production to sustainable operations.

Smart Resource Management and Efficiency: IoT sensors and AI algorithms are deployed across wind farms and solar parks to optimize energy production. For example, AI-powered predictive analytics can forecast weather patterns to adjust the angle of solar panels or the pitch of wind turbine blades in real-time, maximizing energy capture and reducing inefficiency. This directly lowers the energy intensity of operations^[5].

Predictive Maintenance and Lifespan Extension: Instead of scheduled or reactive maintenance, DT enables condition-based monitoring. Vibration sensors and thermal imaging on turbines and other equipment can predict failures before they occur. This minimizes downtime, reduces resource waste from major repairs, and extends the operational lifespan of assets, contributing to a circular economy model.

Circular Economy and Waste Management: In battery manufacturing and recycling, digital platforms can track materials throughout their lifecycle. AI can optimize the disassembly and sorting processes for end-of-life batteries, improving the recovery rates of valuable materials like lithium and cobalt, thereby reducing environmental degradation from mining.

3.2 Empowering Social (S) Performance

DT strengthens the social license to operate for new energy firms.

Occupational Health and Safety (OHS): This is critical in an industry involving high-voltage equipment and construction. Digital twins can simulate hazardous scenarios for training. Wearable IoT devices can monitor workers' vital signs and location in real-time, automatically triggering alerts in case of accidents or exposure to hazardous conditions. Computer vision can enforce the use of personal protective equipment (PPE)^[6].

Supply Chain Due Diligence and Transparency: The complex supply chains for minerals like cobalt and silicon are under intense scrutiny for human rights practices. Blockchain technology can create an immutable ledger tracing raw materials from the source to the finished product, ensuring conflict-free and ethically sourced materials and protecting workers' rights upstream.

Community Engagement and Just Transition: DT facilitates better stakeholder dialogue. GIS (Geographic Information Systems) and data analytics can help in selecting project sites that minimize social and environmental impact. Digital platforms can be used to inform and engage local communities about projects, address grievances, and ensure that the benefits of the energy transition are shared equitably.

3.3 Empowering Governance (G) Performance

Strong governance is the bedrock for effective E and S performance, and DT provides the tools for its enhancement.

Data-Driven Board Oversight and Decision-Making: Instead of relying on lagging indicators, boards can access integrated dashboards that provide real-time ESG data—from carbon emissions and safety incidents to supply chain compliance. This enables more proactive and strategic oversight of ESG risks and opportunities.

Enhanced Risk Management and Internal Controls: AI and machine learning can continuously monitor vast datasets for emerging risks, be it regulatory non-compliance, cybersecurity threats, or operational failures. This allows for pre-emptive mitigation actions, strengthening the overall control environment.

Transparency and Anti-Corruption: Automated reporting systems reduce human error and the potential for manipulation in ESG disclosures. Blockchain-based systems for procurement and contracts can significantly reduce opportunities for corruption and fraud, building trust with investors and regulators.

4. Case in Point: A Glimpse into Contemporary Practices

While a single case cannot represent the entire industry, examining the practices of a leading wind turbine manufacturer, Vestas, illustrates these pathways effectively.

Environmental: Vestas uses its "VestasPerformance+" platform, which employs big data from over 40,000 turbines globally. AI and machine learning analyze this data to optimize the performance of entire wind farms, increasing energy output and reducing the Levelized Cost of Energy (LCOE), a key environmental and economic metric.

Social: The company utilizes digital tools for remote monitoring and troubleshooting, which reduces the need for physical visits and lowers safety risks for technicians. Furthermore, their global supply chain is managed through digital systems that enforce a strict code of conduct for suppliers.

Governance: Vestas has integrated ESG data into its corporate reporting and risk management systems. The board receives regular updates on sustainability KPIs, and the company's commitment to transparency is evidenced by its detailed annual sustainability report, the data for which is largely collected and processed through digital means.

5. Challenges and the Path Forward

Despite the clear benefits, the integration of DT for ESG purposes is not without obstacles:

High Initial Investment: The capital expenditure for IoT sensors, AI software, and digital infrastructure can be prohibitive, especially for smaller players.

Data Security and Privacy: The increased data collection raises significant cybersecurity and data privacy concerns that must be robustly managed.

Skills Gap and Organizational Resistance: A shortage of talent skilled in both data science and sustainability, coupled with cultural resistance to change, can hinder successful implementation.

To overcome these challenges, new energy companies must:

- 1. Develop a Coherent DT-ESG Strategy: DT initiatives must be aligned with and driven by ESG objectives, not pursued in isolation.
- 2.Foster Cross-Functional Collaboration: Break down silos between IT, sustainability, operations, and finance departments.
- 3. Adopt a Phased Approach: Start with pilot projects to demonstrate value before scaling up.
- 4. Prioritize Data Governance: Implement strong cybersecurity measures and ethical data usage policies from the outset.

6.Conclusion

This study demonstrates that digital transformation is a critical lever for unlocking superior ESG performance in the new energy industry. It acts as a multifaceted enforcer, enhancing environmental efficiency through data-driven optimization, strengthening social equity via transparency and safety, and solidifying governance with robust, data-informed oversight. The empowerment effect is realized through the enhancement of a firm's dynamic capabilities, allowing it to better serve its broad stakeholders.

For the new energy sector, which is intrinsically linked to the global sustainability agenda, embracing digital transformation is no longer an optional competitive advantage but a strategic necessity. The companies that successfully integrate digital and sustainability strategies will be best positioned to lead the energy transition, attract conscious capital, and build resilient, future-proof enterprises. Future research should quantitatively measure the strength of these relationships and conduct longitudinal studies to track the long-term impact of DT on the financial and ESG performance of new energy firms.

Funding

No

Conflict of Interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

Reference

- [1] Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509-533.
- [2] Freeman, R. E. (1984). Strategic management: A stakeholder approach. Pitman.
- [3] WEF. (2021). Digital Transformation for a Sustainable Energy Future. World Economic Forum.
- [4] George, G., Merrill, R. K., & Schillebeeckx, S. J. (2021). Digital transformation and sustainability: A review and research agenda. Journal of Management Studies, 58(1), 1-32.
- [5] Bock, S., & Wiener, M. (2021). Towards a taxonomy of digital transformation pathways. Journal of Information Technology Theory and Application, 22(1), 4.
- [6] Vestas. (2023). Annual and Sustainability Report 2022. Retrieved from Vestas website.