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Abstract: This study aimed to construct a Quantitative Spatial Equilibrium (QSE) model that integrates digital factors and
agricultural infrastructure, providing a unified theoretical framework for analyzing the underlying mechanisms of agricultural
economic resilience. The model embedded a three-dimensional resilience system—resistance—adaptation—transformation—
into consumer preferences and production functions. Within the agricultural context, it depicted the generation, exchange,
and enabling mechanisms of data as a novel production factor, and elucidated its synergistic interaction pathways with
both traditional and digital infrastructures. By incorporating the hat algebra approach, the model enabled counterfactual
simulations of policy shocks in multi-regional and multi-sector economic systems, effectively mitigating parameter
identification challenges. The theoretical contributions of this research lay in extending the application of quantitative spatial
economics to the agricultural domain, identifying the sectoral heterogeneity of data-factor diffusion effects, and providing
a formal analytical tool to explore the micro-foundations of how “digital-infrastructure” synergies enhance agricultural
economic resilience. These findings established a methodological basis for subsequent empirical investigations and policy
evaluations.
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1.Introduction

The deep integration of the digital economy and agricultural modernization has been reshaping agricultural production
methods and rural economic structures, injecting new momentum into enhancing agricultural resilience and sustainable
development. According to the 2023 Report of the Ministry of Agriculture and Rural Affairs, the informatization rate of
agricultural production in China had exceeded 25%, and the scale of the agricultural digital economy had reached 2.8
trillion yuan, demonstrating a remarkable annual growth rate'". Against this backdrop, digital technologies empowered
agricultural production, distribution, services, and consumption, thereby significantly strengthening the resilience of the
agricultural economic system'. At the policy level, since 2022, successive No.l Central Policy Documents have emphasized
the promotion of digital villages and the digital transformation of the entire agricultural value chain, aiming to systematically

enhance agricultural economic resilience and sustainability. Theoretically, the digital economy—with its pervasive,
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synergistic, and inclusive characteristics—has laid the micro-foundation for improving agricultural resilience'*”. Data, as a

critical new production factor, optimized agricultural resource allocation, improved total factor productivity, and strengthened
the system’s capacity for shock resistance and adaptive response through information integration and intelligent decision-

(7] Meanwhile, agricultural infrastructure—particularly digitalized facilities such as information networks and cold-

making
chain logistics—served as essential physical carriers for digital empowerment. According to quantitative spatial economics,
infrastructure played a central role in enhancing adaptability and recoverability by reducing factor mobility costs, improving
spatial allocation efficiency, and strengthening regional connectivity®”.

However, existing research primarily focused on empirical verification and lacked a unified theoretical framework that
integrated digital factors, infrastructure, and resilience. In particular, few studies clearly characterized the unique economic
attributes of data factors and their synergistic mechanisms with infrastructure!'”. To fill this theoretical gap, this study
constructed a Quantitative Spatial Equilibrium (QSE) model incorporating digital factors and agricultural infrastructure,
aiming to formally analyze the formation mechanisms of agricultural economic resilience from the three dimensions of
resistance—adaptation—transformation.

The theoretical contributions of this study were threefold. First, it explicitly incorporated data factors into the agricultural
production function, defining their non-rivalry nature and dynamic accumulation process. Second, it calibrated infrastructure
elasticity within a structural model to support counterfactual simulations. Third, it uncovered three core mechanism
pathways—technological progress, resource allocation, and institutional adaptation—thus providing a robust theoretical
foundation for enhancing agricultural resilience and promoting high-quality development through coordinated “digital—

infrastructure—institutional” policies.

2.Empirical Characteristics of Agricultural Economic Resilience and Digital Economy
Development in China

To provide an empirical foundation for the theoretical model, this section briefly outlines and analyzes the key characteristics
of China’s agricultural digitalization and economic resilience.

2.1 Regional Concentration and Structural Imbalance of Agricultural Digital Talent

Agricultural digital talent serves as the core carrier for the application of digital technologies. Following the classification
proposed by Sun Jiulin et al."", this study defined such talent as rural employees engaged in occupations related to digital
technology application, agricultural data analysis, and the operation of intelligent agricultural machinery. The analysis
revealed that between 2014 and 2024, the overall proportion of agricultural digital talent in China increased steadily, yet the
regional distribution remained highly uneven. The share in eastern regions rose rapidly from 3.8% to 9.2%, significantly
ahead of the central (5.6%) and western (3.4%) regions. Although grain-producing regions exhibited a higher proportion of
digital talent than non-grain regions, their growth rate was relatively modest. This pronounced regional imbalance reflected
substantial differences in the depth of digital technology adoption in agriculture and suggested the emergence of a “digital
dividend divide,” a phenomenon consistent with patterns of skill-biased technological change observed in other developing
economies'”. Consequently, it underscored the necessity of incorporating regional heterogeneity into the theoretical model.
2.2 Pronounced Spatial Disparities in Digital Infrastructure Development

Digital infrastructure constitutes the fundamental prerequisite for the functioning of digital factors. Based on a composite
index constructed from indicators such as rural broadband access rates and 5G base station coverage, the national average
value of China’s digital infrastructure index reached only 0.52 in 2024, with striking regional disparities—0.78 in the east,
0.51 in the center, and 0.32 in the west. Notably, the spatial distribution of this index exhibited a strong positive correlation
(r = 0.83) with the agricultural economic resilience index, and the regional gap had widened since 2018. This pattern of
infrastructure divergence and its economic consequences aligns with findings on the digital divide in other contexts'’).

The eastern region experienced rapid improvement, driven by “digital village” pilot policies, while the western region lagged
behind due to natural and economic constraints. This sharp contrast in baseline conditions represents a critical exogenous

constraint that must be accounted for in constructing a multi-regional spatial equilibrium model.
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2.3 Efficiency and Structural Issues in Agricultural Infrastructure Investment

Although total investment in agricultural infrastructure continued to grow, its efficiency exhibited a downward trend. The
increase in total factor productivity (TFP) per unit of investment declined from 0.32 in 2014 to 0.18 in 2024. Meanwhile,
structural imbalances in investment allocation became evident: the return elasticity of investment in rural road transport and
storage logistics facilities was relatively high (0.24 and 0.21, respectively), whereas that of traditional irrigation facilities
remained low (only 0.07). This underscores the importance of not just the volume but the type of infrastructure investment, a
factor critical for growth and resilience'"..

This pattern revealed both the urgency of upgrading traditional infrastructure and the crucial role of digital transformation
in enhancing investment efficiency. It also implied that the type of infrastructure and the degree of its digitalization were
key determinants of its enabling efficiency. These findings provided a strong empirical rationale for distinguishing between
traditional and digital infrastructures in the theoretical model and for analyzing their complementary relationship, particularly

in building adaptive capacity to climate shocks'”.

3.Model Specification

This study constructed a multi-regional monopolistic competition general equilibrium model within the theoretical framework
of Quantitative Spatial Economics (QSE). The model incorporated digital factor inputs, agricultural infrastructure, and
intersectoral production linkages, building on foundational spatial equilibrium theories"”. It aimed to characterize an
economic system consisting of N regions, each containing an agricultural sector—further disaggregated into grain production
(a1), cash crops (az), and livestock & fisheries (as)—a local non-agricultural services sector (s), and an external market.

The model featured three core innovations. First, it embedded the multidimensional “resistance—adaptation—transformation”
framework of agricultural economic resilience into both consumer preferences and production functions, reflecting a
growing emphasis on resilience in economic modeling!”. Second, it explicitly modeled the generation, trading, and enabling
mechanisms of agricultural data factors, while distinguishing between the dual roles of traditional and digital infrastructure.
Third, it accounted for factor mobility and technological spillovers both within the agricultural sector and between
agricultural and non-agricultural sectors, thereby enabling a more comprehensive simulation of the spatial general equilibrium

(18]

effects of policy shocks
3.1 Generation and Accumulation of Agricultural Data Factors

This paper treated data as an accumulable and essential production factor, recognizing its unique economic properties"”.
In region i and period t, the data stock of the agricultural sector (representative subindustry g), denoted as Dy, comprised
two components: self-collected data (D,;), generated automatically during agricultural operations via IoT devices and
e-commerce platforms; and externally purchased data (D"w,;;) acquired from data markets.

Data, characterized by non-rivalry and replicability, followed the dynamic accumulation process. The amount of data
collected (Dcoll,it) was positively related to the level of digital technology (Ait) and the scale of agricultural activities (Xk,it).
Government agencies or enterprises could purchase external data at price pbuy,it in data markets. The non-rival nature of data
allowed its simultaneous use in local production (e.g., precision fertilization) and interregional trade.

3.2 Consumer Preferences and Resilience Evaluation System

Agricultural economic resilience was incorporated into the consumer utility function to capture preferences for system
stability and sustainability. Following recent advances in welfare measurement under uncertainty™”’, the resilience index
of region i in period t (Rit) was defined as a composite CES function of three dimensions: resistance (Rres,it), adaptation
(Radj,it), and transformation (Rinno,it). The final utility of consumers depended on agricultural product consumption (Cit)
and resilience level (Rit).

3.3 Production Function and Data-Driven Enabling Mechanism

Agricultural production followed a nested CES—Cobb—Douglas structure, integrating data factors as a new input alongside
traditional factors such as labor and capital. The representative firm in sector g of region i produced output accordingly. The
parameter & captured the data-driven enabling effect: a higher § indicated a stronger enhancement of productivity through

digital technologies, thereby improving the system’s capacity to withstand external shocks, a mechanism increasingly
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documented in the literature on technology and productivity (18).

3.4 Composite Mechanism of Agricultural Infrastructure

Agricultural infrastructure (Git) was modeled as a composite form comprising traditional infrastructure (Gtra,it), such
as irrigation, transport, and storage, and digital infrastructure (Gdig,it), such as 5G networks and IoT systems. These
components were combined through a CES function. Infrastructure influenced agricultural economic resilience through
multiple channels, including reducing transportation costs, enhancing information transparency, and optimizing resource
allocation”"’. The transportation cost for agricultural goods between regions i and j (tijt) was assumed to be inversely related
to the infrastructure level.

3.5 Factor Mobility and Policy Intervention

Rural labor was assumed to be mobile across agricultural and non-agricultural sectors as well as across regions. Migration
decisions depended on expected utility differentials and migration costs, consistent with spatial equilibrium models””.
Government intervention influenced agricultural resilience through taxation, subsidies, and infrastructure investment.

3.6 Equilibrium Conditions and Resilience Feedback Mechanism

The model achieved closure through the simultaneous clearing of product, labor, data, and infrastructure markets. Agricultural
economic resilience (Rit) was not treated as exogenous; instead, it dynamically influenced production efficiency, investment
performance, and consumer confidence, forming a positive feedback loop, a feature central to understanding path-dependent
development outcomes'™. By calibrating provincial-level parameters for China and conducting counterfactual simulations,
the model quantitatively evaluated the contributions and transmission mechanisms of the digital economy and infrastructure

to agricultural economic resilience.

4.Theoretical Analysis
To elucidate the underlying mechanisms through which the digital economy and agricultural infrastructure influence
agricultural economic resilience, this study adopted the “Hat Algebra” approach proposed by Dekle et al. to transform

2 Let the observed variable be x, and

the above general equilibrium model into a system expressed in relative changes

its counterfactual value be x'; then, the relative change is defined as Xx=x'/x . By taking this differential form, the method

effectively eliminates constant parameters, highlights the structural variations induced by policy shocks, and reduces the

number of parameters requiring estimation, thereby improving model identification. Within this framework, this section

theoretically derives the core mechanisms through which digital factors and infrastructure affect agricultural economic

resilience.

4.1 Impact of the Digital Economy on Agricultural Total Factor Productivity

Starting from the producer’s equilibrium condition and based on the production function described above, the relative change

in agricultural Total Factor Productivity (TFP) primarily depends on the relative change in data input and its output elasticity:
TFP,, « D& (1D

Since the output elasticity of data input (6>0) was positive, agricultural TFP responded positively to the increase in data factor

investment. This indicated that the application of digital technologies became a key pathway for improving agricultural TFP

by optimizing decision-making, enabling precision input, and reducing production volatility*”. The non-rivalrous nature of

data further amplifies these productivity effects across different agricultural applications'*.

4.2 Impact of Digital Infrastructure on the Three Dimensions of Agricultural Resilience
The relative change in the three-dimensional capacities of agricultural resilience can be expressed as a function of the relative
change in the stock of digital infrastructure:

Rice=Mres " Gaigr Radj =Nadj Gaigr  Rinno = Minno * Gazg (11D
where M, Nugi» Minno (all > 0) denote the elasticities of digital infrastructure with respect to resistance, adaptation, and
transformation capacities, respectively.
This demonstrated that digital infrastructure enhanced agricultural economic resilience through three pathways: improving
information accessibility, reducing transaction costs, and promoting technological innovation™". Theoretically, the elasticity

coefficient for innovation and transformation (ninno) was typically the largest, implying that digital infrastructure was
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particularly effective in driving long-term structural transformation by enabling new business models and facilitating

knowledge spillovers across the agricultural value chain®™*".

4.3 Synergistic Mechanism between Agricultural Infrastructure and Resilience Enhancement
Traditional and digital infrastructures exhibited a complementary relationship. The marginal contribution of composite

infrastructure stock to agricultural output could be decomposed as follows:

% _ oY, | 0% OF (12)
0G;; 0G; OR;; 0Gy
—— ——_— ——

Direct effect ~ Indirect toughness effect

This indicated that infrastructure not only directly promoted agricultural growth but also indirectly enhanced output stability

521 The synergistic effect depended on the elasticity of substitution

and sustainability by strengthening economic resilience
(p) and the composite weight () between traditional and digital infrastructures. Such complementarity is particularly crucial
in developing country contexts where infrastructure gaps persist””'.
4.4 Heterogeneous Effects under Different Scenarios
The theoretical model suggested significant sectoral and regional heterogeneity in the effects of the digital economy and
infrastructure on resilience. For instance:
Major grain-producing regions: Given the relatively high stock of traditional infrastructure, marginal improvements in digital
infrastructure exerted a stronger influence on adaptive capacity (Radj), as digitalization more effectively optimized the
allocation efficiency of existing resources'”
Economically developed regions: Digital infrastructure had a more pronounced effect on innovative and transformative
capacity (Rinno), as these regions possessed more mature market ecosystems and stronger innovation capabilities to absorb
and convert disruptive digital technologies!”".
This heterogeneity warranted close examination in subsequent counterfactual simulations.
4.5 Integrated Effects of Multidimensional Resilience on Agricultural Growth
Agricultural economic resilience affected agricultural value added through three channels—stabilizing production, optimizing
resource allocation, and promoting innovation. The relative change in total output could be decomposed into changes in factor
inputs and TFP variations induced by resilience:

Y, ~ILf K D} R, (13
wherel{denoted the elasticity of resilience with respect to output. This indicated that improvements in agricultural economic
resilience independently contributed to agricultural output growth. Particularly under external shocks, resilience helped

17]

maintain system stability and mitigate output volatility!'”’. This theoretically demonstrated the long-term value of investing in

resilience-building, especially in the context of increasing climate variability and market disruptions”’.

5.Quantitative Methodology and Parameter Calibration

The theoretical model developed in this study was ultimately applied to real-world economic analysis through quantitative
implementation. The key analytical strength of the model lay in its capacity for calibration and counterfactual simulation. This
section elaborates on the quantitative realization strategy and the calibration procedures for the core structural parameters.

5.1 Counterfactual Simulation Based on the Hat Algebra Method
To effectively assess the impacts of policy shocks, this study adopted the Hat Algebra approach proposed by Dekle et al.

24
transforming the multi-sector general equilibrium framework into a computable system of equations expressed in relative
changes, defined as X=x'/x, The advantages of this approach were threefold:

Avoidance of over-parameterization — it did not require full calibration of deeply unobservable structural parameters such as
absolute productivity levels;

Data-driven structure — it directly utilized empirically observed baseline equilibrium data such as trade flows and factor
shares;

Shock tracing capability — it allowed direct computation of the relative changes in endogenous variables resulting from
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exogenous shocks, such as increases in digital infrastructure investment.
{ﬂ'aijt: q"aijta Waijes Lait> Waits Y qies Gdig,it: Gt'ra,it}
Given a set of baseline observations and the exogenous specification of:
digital infrastructure investment shocks,
changes in agricultural data-factor inputs, and external market variations”", the model solved for the endogenous system of
relative changes under a pre-specified set of deep structural parameters.
{6.B.7.0.0.0. K. Nye5. Nadj>Ninno §

[ﬁ}aita Eait: ﬁ'aijt: ﬁres,it: Radj,ita ﬁ ?

This approach accurately captured the dynamic responses of the agricultural economic system to digital technology shocks

inno,it> * ait

and effectively mitigated systemic bias arising from structural economic changes.

5.2 Parameter Calibration Strategy

To enable numerical simulation, the model’s structural parameters required careful calibration. This study employed a hybrid
approach combining structural estimation and literature-constrained calibration.

(1) Literature-Constrained Parameters

Several key parameters were directly drawn from established studies and adjusted to reflect the characteristics of China’s
agricultural economy:

Output elasticity of data factors (5: 0.08—0.12"%*;

Elasticities of digital infrastructure with respect to the three resilience dimensions:

n_res € [0.05, 0.15]

n_adj € [0.06, 0.18]

n_inno € [0.10, 0.25]%"*");

Output elasticity of traditional agricultural infrastructure (&: 0.12°%;

Labor output elasticity (B): 0.28 (reference value from related empirical research™**”;

Intermediate input elasticity (y): determined from the structure of regional input—output tables™®.
(2) Fitted Parameters
The remaining parameters were obtained through a residual-minimization fitting process, formulated as the following

optimization problem:

. 2 _
“%?Z D lrrto) - viee 2 ) @e=00" U
it I
where
y“;?twdelzmodel represents the model-predicted agricultural output,
ydata: the observed output,
6, :the vector of estimated parameters,

Aj,: the constraint weight, and

6, the reference values derived from prior literature.
This calibration procedure ensured that the model could reproduce the observed evolution of agricultural economic

resilience in China while maintaining parameter consistency with economic theory, thereby providing a reliable baseline for
counterfactual analysis.

5.3 Stock Computation and Data Processing

The agricultural data-factor stock (D;) was computed using the perpetual inventory method (PIM). The initial stock was
estimated based on agricultural data-resource surveys, while the depreciation rate followed the benchmark for ICT capital,
set at 15%"" Similarly, both digital and traditional infrastructure stocks were constructed using investment series and
corresponding depreciation rates under the perpetual inventory framework.

5.4 Summary
Through the hybrid calibration strategy that integrated literature constraints and fitted estimation, this study ensured both the
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economic plausibility and empirical relevance of the parameterization. Consequently, the theoretical model evolved into a
quantitative analytical tool capable of conducting policy experiments and counterfactual evaluations tailored to the realities of

China’s agricultural economy.

6.Conclusion and Policy Implications

This study developed a Quantitative Spatial Equilibrium (QSE) model that integrated digital factors and agricultural
infrastructure to provide a unified analytical framework for understanding the formation mechanism of agricultural economic
resilience along three dimensions—tesistance, adaptation, and transformation. The theoretical contribution lay in explicitly
incorporating data factors as a non-rival and novel production input into the production function and formally characterizing
their synergistic interaction with both traditional and digital infrastructures'>*"" This approach revealed the intrinsic logic of
“digital empowerment—infrastructure support-resilience enhancement.”

6.1 Main Findings

1)Applicability of the Theoretical Framework

This study extended the application of Quantitative Spatial Economics (QSE) to the agricultural domain. The constructed
model effectively captured multi-regional, multi-sectoral, and multi-factor interactions, providing a formalized analytical tool
for exploring spatial equilibrium and resilience responses within the agricultural economic system'®.

2)Core Mechanism of Data Factors

The theoretical derivation demonstrated that data factors directly enhanced agricultural economic resilience by increasing
total factor productivity (TFP). Their non-rivalry and cumulative characteristics implied decreasing marginal costs
and additive efficiency effects, forming the microeconomic foundation for their role as a primary driver of resilience
enhancement!”,

3)Synergistic Amplification Effects of Infrastructure

The model revealed that infrastructure contributed to agricultural performance through both direct and indirect channels—
it reduced transaction and logistics costs while simultaneously amplifying economic resilience'”. The relationship between
traditional and digital infrastructure was complementary rather than substitutive, governed by the elasticity of substitution
(p). Their effective integration emerged as the key to maximizing resilience improvement.4)Theoretical Significance of
Heterogeneity

The model’s endogenous regional and sectoral heterogeneity indicated that identical policy shocks—such as increased
investment in digital infrastructure—generated heterogeneous impacts across regions and industries. This theoretical finding
underscored the limitations of “one-size-fits-all” policy approaches and highlighted the necessity of tailoring policies to local
factor endowments and economic structures (Bryan & Morten, 2019).

6.2 Theoretical Insights and Policy Implications

1)Treating Data-Factor Accumulation as a Long-Term Strategy

Policymakers should move beyond perceiving digital technologies merely as instrumental tools and instead treat them as
core production factors requiring systematic development. This entails establishing an agricultural data resource system that
is well-defined in ownership, open and shareable, and securely managed, thereby laying the institutional foundation for data
accumulation and market-based exchange!.

2)Strengthening Synergistic Investment between Digital and Physical Infrastructure

The findings suggested that the enabling effect of digital technologies critically depended on the modernization of traditional
infrastructure. Policies should promote integrated infrastructure investment, such as embedding [oT sensors during the
construction of high-standard farmland or integrating smart logistics networks when upgrading rural transportation systems,
to maximize synergistic investment effects™".

3)Designing Policies According to the Heterogeneity of Resilience Dimensions

The theoretical model indicated that digital technologies exerted the strongest influence on transformational capacity,
while their impact on resistance capacity was comparatively limited. Consequently, in regions vulnerable to natural shocks,

policymakers should not rely solely on digital technologies but complement them with hard infrastructure such as water
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conservancy and disaster prevention facilities, forming a combined approach of “digital early warning + engineering
defense™"”.

4)Providing a Quantitative Tool for Policy Evaluation

The proposed quantitative spatial equilibrium model, coupled with the Hat Algebra approach™, offered a scalable analytical
framework and quantitative tool for assessing the macroeconomic and spatial spillover effects of digital agriculture policies,
including subsidies, pilot programs, and infrastructure investments.

6.3 Summary

In summary, this study provided theoretical evidence for the feasibility and significance of the synergistic interaction between
the digital economy and agricultural infrastructure in enhancing agricultural economic resilience. Future research could
extend this framework through empirical estimation and counterfactual simulations using more granular datasets, thereby
offering more precise policy insights to promote high-quality agricultural development and advance the goal of building a

strong agricultural nation.
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