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Abstract: This study aimed to construct a Quantitative Spatial Equilibrium (QSE) model that integrates digital factors and 
agricultural infrastructure, providing a unifi ed theoretical framework for analyzing the underlying mechanisms of agricultural 
economic resilience. The model embedded a three-dimensional resilience system—resistance–adaptation–transformation—
into consumer preferences and production functions. Within the agricultural context, it depicted the generation, exchange, 
and enabling mechanisms of data as a novel production factor, and elucidated its synergistic interaction pathways with 
both traditional and digital infrastructures. By incorporating the hat algebra approach, the model enabled counterfactual 
simulations of policy shocks in multi-regional and multi-sector economic systems, effectively mitigating parameter 
identifi cation challenges. The theoretical contributions of this research lay in extending the application of quantitative spatial 
economics to the agricultural domain, identifying the sectoral heterogeneity of data-factor diff usion eff ects, and providing 
a formal analytical tool to explore the micro-foundations of how “digital–infrastructure” synergies enhance agricultural 
economic resilience. These fi ndings established a methodological basis for subsequent empirical investigations and policy 
evaluations.
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1.Introduction
The deep integration of the digital economy and agricultural modernization has been reshaping agricultural production 
methods and rural economic structures, injecting new momentum into enhancing agricultural resilience and sustainable 
development. According to the 2023 Report of the Ministry of Agriculture and Rural Affairs, the informatization rate of 
agricultural production in China had exceeded 25%, and the scale of the agricultural digital economy had reached 2.8 
trillion yuan, demonstrating a remarkable annual growth rate[1,2]. Against this backdrop, digital technologies empowered 
agricultural production, distribution, services, and consumption, thereby significantly strengthening the resilience of the 
agricultural economic system[3].At the policy level, since 2022, successive No.1 Central Policy Documents have emphasized 
the promotion of digital villages and the digital transformation of the entire agricultural value chain, aiming to systematically 
enhance agricultural economic resilience and sustainability. Theoretically, the digital economy—with its pervasive, 
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synergistic, and inclusive characteristics—has laid the micro-foundation for improving agricultural resilience[4,5]. Data, as a 
critical new production factor, optimized agricultural resource allocation, improved total factor productivity, and strengthened 
the system’s capacity for shock resistance and adaptive response through information integration and intelligent decision-
making[6,7]. Meanwhile, agricultural infrastructure—particularly digitalized facilities such as information networks and cold-
chain logistics—served as essential physical carriers for digital empowerment. According to quantitative spatial economics, 
infrastructure played a central role in enhancing adaptability and recoverability by reducing factor mobility costs, improving 
spatial allocation efficiency, and strengthening regional connectivity[8,9].
However, existing research primarily focused on empirical verification and lacked a unified theoretical framework that 
integrated digital factors, infrastructure, and resilience. In particular, few studies clearly characterized the unique economic 
attributes of data factors and their synergistic mechanisms with infrastructure[10]. To fill this theoretical gap, this study 
constructed a Quantitative Spatial Equilibrium (QSE) model incorporating digital factors and agricultural infrastructure, 
aiming to formally analyze the formation mechanisms of agricultural economic resilience from the three dimensions of 
resistance–adaptation–transformation.
The theoretical contributions of this study were threefold. First, it explicitly incorporated data factors into the agricultural 
production function, defining their non-rivalry nature and dynamic accumulation process. Second, it calibrated infrastructure 
elasticity within a structural model to support counterfactual simulations. Third, it uncovered three core mechanism 
pathways—technological progress, resource allocation, and institutional adaptation—thus providing a robust theoretical 
foundation for enhancing agricultural resilience and promoting high-quality development through coordinated “digital–
infrastructure–institutional” policies.

2.Empirical Characteristics of Agricultural Economic Resilience and Digital Economy 
Development in China
To provide an empirical foundation for the theoretical model, this section briefly outlines and analyzes the key characteristics 
of China’s agricultural digitalization and economic resilience.

2.1 Regional Concentration and Structural Imbalance of Agricultural Digital Talent
Agricultural digital talent serves as the core carrier for the application of digital technologies. Following the classification 
proposed by Sun Jiulin et al.[11], this study defined such talent as rural employees engaged in occupations related to digital 
technology application, agricultural data analysis, and the operation of intelligent agricultural machinery. The analysis 
revealed that between 2014 and 2024, the overall proportion of agricultural digital talent in China increased steadily, yet the 
regional distribution remained highly uneven. The share in eastern regions rose rapidly from 3.8% to 9.2%, significantly 
ahead of the central (5.6%) and western (3.4%) regions. Although grain-producing regions exhibited a higher proportion of 
digital talent than non-grain regions, their growth rate was relatively modest. This pronounced regional imbalance reflected 
substantial differences in the depth of digital technology adoption in agriculture and suggested the emergence of a “digital 
dividend divide,” a phenomenon consistent with patterns of skill-biased technological change observed in other developing 
economies[12]. Consequently, it underscored the necessity of incorporating regional heterogeneity into the theoretical model.

2.2 Pronounced Spatial Disparities in Digital Infrastructure Development
Digital infrastructure constitutes the fundamental prerequisite for the functioning of digital factors. Based on a composite 
index constructed from indicators such as rural broadband access rates and 5G base station coverage, the national average 
value of China’s digital infrastructure index reached only 0.52 in 2024, with striking regional disparities—0.78 in the east, 
0.51 in the center, and 0.32 in the west. Notably, the spatial distribution of this index exhibited a strong positive correlation 
(r = 0.83) with the agricultural economic resilience index, and the regional gap had widened since 2018. This pattern of 
infrastructure divergence and its economic consequences aligns with findings on the digital divide in other contexts[13].
The eastern region experienced rapid improvement, driven by “digital village” pilot policies, while the western region lagged 
behind due to natural and economic constraints. This sharp contrast in baseline conditions represents a critical exogenous 
constraint that must be accounted for in constructing a multi-regional spatial equilibrium model.
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2.3 Efficiency and Structural Issues in Agricultural Infrastructure Investment
Although total investment in agricultural infrastructure continued to grow, its efficiency exhibited a downward trend. The 
increase in total factor productivity (TFP) per unit of investment declined from 0.32 in 2014 to 0.18 in 2024. Meanwhile, 
structural imbalances in investment allocation became evident: the return elasticity of investment in rural road transport and 
storage logistics facilities was relatively high (0.24 and 0.21, respectively), whereas that of traditional irrigation facilities 
remained low (only 0.07). This underscores the importance of not just the volume but the type of infrastructure investment, a 
factor critical for growth and resilience[14].
This pattern revealed both the urgency of upgrading traditional infrastructure and the crucial role of digital transformation 
in enhancing investment efficiency. It also implied that the type of infrastructure and the degree of its digitalization were 
key determinants of its enabling efficiency. These findings provided a strong empirical rationale for distinguishing between 
traditional and digital infrastructures in the theoretical model and for analyzing their complementary relationship, particularly 
in building adaptive capacity to climate shocks[15].

3.Model Specification
This study constructed a multi-regional monopolistic competition general equilibrium model within the theoretical framework 
of Quantitative Spatial Economics (QSE). The model incorporated digital factor inputs, agricultural infrastructure, and 
intersectoral production linkages, building on foundational spatial equilibrium theories[16]. It aimed to characterize an 
economic system consisting of N regions, each containing an agricultural sector—further disaggregated into grain production 
(a₁), cash crops (a₂), and livestock & fisheries (a₃)—a local non-agricultural services sector (s), and an external market.
The model featured three core innovations. First, it embedded the multidimensional “resistance–adaptation–transformation” 
framework of agricultural economic resilience into both consumer preferences and production functions, reflecting a 
growing emphasis on resilience in economic modeling[17]. Second, it explicitly modeled the generation, trading, and enabling 
mechanisms of agricultural data factors, while distinguishing between the dual roles of traditional and digital infrastructure. 
Third, it accounted for factor mobility and technological spillovers both within the agricultural sector and between 
agricultural and non-agricultural sectors, thereby enabling a more comprehensive simulation of the spatial general equilibrium 
effects of policy shocks[18].

3.1 Generation and Accumulation of Agricultural Data Factors
This paper treated data as an accumulable and essential production factor, recognizing its unique economic properties[19]. 
In region i and period t, the data stock of the agricultural sector (representative subindustry g), denoted as Dᵢₜ, comprised 
two components: self-collected data (Dᶜᵒˡˡ,ᵢₜ), generated automatically during agricultural operations via IoT devices and 
e-commerce platforms; and externally purchased data (Dᵇᵘʸ,ᵢₜ) acquired from data markets.
Data, characterized by non-rivalry and replicability, followed the dynamic accumulation process. The amount of data 
collected (Dcoll,it) was positively related to the level of digital technology (Ait) and the scale of agricultural activities (Xk,it). 
Government agencies or enterprises could purchase external data at price pbuy,it in data markets. The non-rival nature of data 
allowed its simultaneous use in local production (e.g., precision fertilization) and interregional trade.

3.2 Consumer Preferences and Resilience Evaluation System
Agricultural economic resilience was incorporated into the consumer utility function to capture preferences for system 
stability and sustainability. Following recent advances in welfare measurement under uncertainty[20], the resilience index 
of region i in period t (Rit) was defined as a composite CES function of three dimensions: resistance (Rres,it), adaptation 
(Radj,it), and transformation (Rinno,it). The final utility of consumers depended on agricultural product consumption (Cit) 
and resilience level (Rit).

3.3 Production Function and Data-Driven Enabling Mechanism
Agricultural production followed a nested CES–Cobb–Douglas structure, integrating data factors as a new input alongside 
traditional factors such as labor and capital. The representative firm in sector g of region i produced output accordingly. The 
parameter δ captured the data-driven enabling effect: a higher δ indicated a stronger enhancement of productivity through 
digital technologies, thereby improving the system’s capacity to withstand external shocks, a mechanism increasingly 
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documented in the literature on technology and productivity (18).

3.4 Composite Mechanism of Agricultural Infrastructure
Agricultural infrastructure (Git) was modeled as a composite form comprising traditional infrastructure (Gtra,it), such 
as irrigation, transport, and storage, and digital infrastructure (Gdig,it), such as 5G networks and IoT systems. These 
components were combined through a CES function. Infrastructure influenced agricultural economic resilience through 
multiple channels, including reducing transportation costs, enhancing information transparency, and optimizing resource 
allocation[21]. The transportation cost for agricultural goods between regions i and j (τijt) was assumed to be inversely related 
to the infrastructure level.

3.5 Factor Mobility and Policy Intervention
Rural labor was assumed to be mobile across agricultural and non-agricultural sectors as well as across regions. Migration 
decisions depended on expected utility differentials and migration costs, consistent with spatial equilibrium models[22]. 
Government intervention infl uenced agricultural resilience through taxation, subsidies, and infrastructure investment.

3.6 Equilibrium Conditions and Resilience Feedback Mechanism
The model achieved closure through the simultaneous clearing of product, labor, data, and infrastructure markets. Agricultural 
economic resilience (Rit) was not treated as exogenous; instead, it dynamically infl uenced production effi  ciency, investment 
performance, and consumer confi dence, forming a positive feedback loop, a feature central to understanding path-dependent 
development outcomes[23]. By calibrating provincial-level parameters for China and conducting counterfactual simulations, 
the model quantitatively evaluated the contributions and transmission mechanisms of the digital economy and infrastructure 
to agricultural economic resilience.

4.Theoretical Analysis
To elucidate the underlying mechanisms through which the digital economy and agricultural infrastructure influence 
agricultural economic resilience, this study adopted the “Hat Algebra” approach proposed by Dekle et al. to transform 
the above general equilibrium model into a system expressed in relative changes[24]. Let the observed variable be x, and 
its counterfactual value be x′; then, the relative change is defi ned as =x′/x . By taking this diff erential form, the method 
effectively eliminates constant parameters, highlights the structural variations induced by policy shocks, and reduces the 
number of parameters requiring estimation, thereby improving model identification. Within this framework, this section 
theoretically derives the core mechanisms through which digital factors and infrastructure affect agricultural economic 
resilience.

4.1 Impact of the Digital Economy on Agricultural Total Factor Productivity
Starting from the producer’s equilibrium condition and based on the production function described above, the relative change 
in agricultural Total Factor Productivity (TFP) primarily depends on the relative change in data input and its output elasticity:

Since the output elasticity of data input (δ>0) was positive, agricultural TFP responded positively to the increase in data factor 
investment. This indicated that the application of digital technologies became a key pathway for improving agricultural TFP 
by optimizing decision-making, enabling precision input, and reducing production volatility[25]. The non-rivalrous nature of 
data further amplifi es these productivity eff ects across diff erent agricultural applications[1,26]. 

4.2 Impact of Digital Infrastructure on the Three Dimensions of Agricultural Resilience
The relative change in the three-dimensional capacities of agricultural resilience can be expressed as a function of the relative 
change in the stock of digital infrastructure:

where ηres , ηadj , ηinno (all > 0) denote the elasticities of digital infrastructure with respect to resistance, adaptation, and 
transformation capacities, respectively. 
This demonstrated that digital infrastructure enhanced agricultural economic resilience through three pathways: improving 
information accessibility, reducing transaction costs, and promoting technological innovation[21]. Theoretically, the elasticity 
coefficient for innovation and transformation (ηinno) was typically the largest, implying that digital infrastructure was 
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particularly effective in driving long-term structural transformation by enabling new business models and facilitating 
knowledge spillovers across the agricultural value chain[23,27].

4.3 Synergistic Mechanism between Agricultural Infrastructure and Resilience Enhancement
Traditional and digital infrastructures exhibited a complementary relationship. The marginal contribution of composite 
infrastructure stock to agricultural output could be decomposed as follows:

This indicated that infrastructure not only directly promoted agricultural growth but also indirectly enhanced output stability 
and sustainability by strengthening economic resilience[28,29]. The synergistic eff ect depended on the elasticity of substitution 
(ρ) and the composite weight (π) between traditional and digital infrastructures. Such complementarity is particularly crucial 
in developing country contexts where infrastructure gaps persist[21].

4.4 Heterogeneous Eff ects under Diff erent Scenarios
The theoretical model suggested significant sectoral and regional heterogeneity in the effects of the digital economy and 
infrastructure on resilience. For instance:
Major grain-producing regions: Given the relatively high stock of traditional infrastructure, marginal improvements in digital 
infrastructure exerted a stronger influence on adaptive capacity (Radj), as digitalization more effectively optimized the 
allocation effi  ciency of existing resources[22].
Economically developed regions: Digital infrastructure had a more pronounced effect on innovative and transformative 
capacity (Rinno), as these regions possessed more mature market ecosystems and stronger innovation capabilities to absorb 
and convert disruptive digital technologies[13].
This heterogeneity warranted close examination in subsequent counterfactual simulations.

4.5 Integrated Eff ects of Multidimensional Resilience on Agricultural Growth
Agricultural economic resilience aff ected agricultural value added through three channels—stabilizing production, optimizing 
resource allocation, and promoting innovation. The relative change in total output could be decomposed into changes in factor 
inputs and TFP variations induced by resilience:

whereζdenoted the elasticity of resilience with respect to output. This indicated that improvements in agricultural economic 
resilience independently contributed to agricultural output growth. Particularly under external shocks, resilience helped 
maintain system stability and mitigate output volatility[17]. This theoretically demonstrated the long-term value of investing in 
resilience-building, especially in the context of increasing climate variability and market disruptions[3].

5.Quantitative Methodology and Parameter Calibration
The theoretical model developed in this study was ultimately applied to real-world economic analysis through quantitative 
implementation. The key analytical strength of the model lay in its capacity for calibration and counterfactual simulation. This 
section elaborates on the quantitative realization strategy and the calibration procedures for the core structural parameters.

5.1 Counterfactual Simulation Based on the Hat Algebra Method
To eff ectively assess the impacts of policy shocks, this study adopted the Hat Algebra approach proposed by Dekle et al.[24], 
transforming the multi-sector general equilibrium framework into a computable system of equations expressed in relative 
changes, defi ned as =x′/x, The advantages of this approach were threefold:
Avoidance of over-parameterization — it did not require full calibration of deeply unobservable structural parameters such as 
absolute productivity levels;
Data-driven structure — it directly utilized empirically observed baseline equilibrium data such as trade fl ows and factor 
shares;
Shock tracing capability — it allowed direct computation of the relative changes in endogenous variables resulting from 
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exogenous shocks, such as increases in digital infrastructure investment.

Given a set of baseline observations and the exogenous specifi cation of:
digital infrastructure investment shocks,
changes in agricultural data-factor inputs, and external market variations[31], the model solved for the endogenous system of 
relative changes under a pre-specifi ed set of deep structural parameters.

This approach accurately captured the dynamic responses of the agricultural economic system to digital technology shocks 
and eff ectively mitigated systemic bias arising from structural economic changes.

5.2 Parameter Calibration Strategy
To enable numerical simulation, the model’s structural parameters required careful calibration. This study employed a hybrid 
approach combining structural estimation and literature-constrained calibration.
(1) Literature-Constrained Parameters
Several key parameters were directly drawn from established studies and adjusted to refl ect the characteristics of China’s 
agricultural economy:
Output elasticity of data factors (δ: 0.08–0.12[1,8,32];
Elasticities of digital infrastructure with respect to the three resilience dimensions:
η_res ∈ [0.05, 0.15]
η_adj ∈ [0.06, 0.18]
η_inno ∈ [0.10, 0.25][21,33];
Output elasticity of traditional agricultural infrastructure (ξ: 0.12[28];
Labor output elasticity (β): 0.28 (reference value from related empirical research[34,35];
Intermediate input elasticity (γ): determined from the structure of regional input–output tables[36].
(2) Fitted Parameters
The remaining parameters were obtained through a residual-minimization fitting process, formulated as the following 
optimization problem:

where

:model represents the model-predicted agricultural output,

: the observed output,
 :the vector of estimated parameters,
: the constraint weight, and
: the reference values derived from prior literature.

This calibration procedure ensured that the model could reproduce the observed evolution of agricultural economic 
resilience in China while maintaining parameter consistency with economic theory, thereby providing a reliable baseline for 
counterfactual analysis.

5.3 Stock Computation and Data Processing
The agricultural data-factor stock (Dit) was computed using the perpetual inventory method (PIM). The initial stock was 
estimated based on agricultural data-resource surveys, while the depreciation rate followed the benchmark for ICT capital, 
set at 15%[37].Similarly, both digital and traditional infrastructure stocks were constructed using investment series and 
corresponding depreciation rates under the perpetual inventory framework.

5.4 Summary
Through the hybrid calibration strategy that integrated literature constraints and fi tted estimation, this study ensured both the 
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economic plausibility and empirical relevance of the parameterization. Consequently, the theoretical model evolved into a 
quantitative analytical tool capable of conducting policy experiments and counterfactual evaluations tailored to the realities of 
China’s agricultural economy.

6.Conclusion and Policy Implications
This study developed a Quantitative Spatial Equilibrium (QSE) model that integrated digital factors and agricultural 
infrastructure to provide a unified analytical framework for understanding the formation mechanism of agricultural economic 
resilience along three dimensions—resistance, adaptation, and transformation. The theoretical contribution lay in explicitly 
incorporating data factors as a non-rival and novel production input into the production function and formally characterizing 
their synergistic interaction with both traditional and digital infrastructures[19,21]. This approach revealed the intrinsic logic of 
“digital empowerment–infrastructure support–resilience enhancement.”

6.1 Main Findings
1)Applicability of the Theoretical Framework
This study extended the application of Quantitative Spatial Economics (QSE) to the agricultural domain. The constructed 
model effectively captured multi-regional, multi-sectoral, and multi-factor interactions, providing a formalized analytical tool 
for exploring spatial equilibrium and resilience responses within the agricultural economic system[16].
2)Core Mechanism of Data Factors
The theoretical derivation demonstrated that data factors directly enhanced agricultural economic resilience by increasing 
total factor productivity (TFP). Their non-rivalry and cumulative characteristics implied decreasing marginal costs 
and additive efficiency effects, forming the microeconomic foundation for their role as a primary driver of resilience 
enhancement[19].
3)Synergistic Amplification Effects of Infrastructure
The model revealed that infrastructure contributed to agricultural performance through both direct and indirect channels—
it reduced transaction and logistics costs while simultaneously amplifying economic resilience[9]. The relationship between 
traditional and digital infrastructure was complementary rather than substitutive, governed by the elasticity of substitution 
(ρ). Their effective integration emerged as the key to maximizing resilience improvement.4)Theoretical Significance of 
Heterogeneity
The model’s endogenous regional and sectoral heterogeneity indicated that identical policy shocks—such as increased 
investment in digital infrastructure—generated heterogeneous impacts across regions and industries. This theoretical finding 
underscored the limitations of “one-size-fits-all” policy approaches and highlighted the necessity of tailoring policies to local 
factor endowments and economic structures (Bryan & Morten, 2019).

6.2 Theoretical Insights and Policy Implications
1)Treating Data-Factor Accumulation as a Long-Term Strategy
Policymakers should move beyond perceiving digital technologies merely as instrumental tools and instead treat them as 
core production factors requiring systematic development. This entails establishing an agricultural data resource system that 
is well-defined in ownership, open and shareable, and securely managed, thereby laying the institutional foundation for data 
accumulation and market-based exchange[5].
2)Strengthening Synergistic Investment between Digital and Physical Infrastructure
The findings suggested that the enabling effect of digital technologies critically depended on the modernization of traditional 
infrastructure. Policies should promote integrated infrastructure investment, such as embedding IoT sensors during the 
construction of high-standard farmland or integrating smart logistics networks when upgrading rural transportation systems, 
to maximize synergistic investment effects[38].
3)Designing Policies According to the Heterogeneity of Resilience Dimensions
The theoretical model indicated that digital technologies exerted the strongest influence on transformational capacity, 
while their impact on resistance capacity was comparatively limited. Consequently, in regions vulnerable to natural shocks, 
policymakers should not rely solely on digital technologies but complement them with hard infrastructure such as water 
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conservancy and disaster prevention facilities, forming a combined approach of “digital early warning + engineering 
defense”[10].
4)Providing a Quantitative Tool for Policy Evaluation
The proposed quantitative spatial equilibrium model, coupled with the Hat Algebra approach[24], offered a scalable analytical 
framework and quantitative tool for assessing the macroeconomic and spatial spillover effects of digital agriculture policies, 
including subsidies, pilot programs, and infrastructure investments.

6.3 Summary
In summary, this study provided theoretical evidence for the feasibility and significance of the synergistic interaction between 
the digital economy and agricultural infrastructure in enhancing agricultural economic resilience. Future research could 
extend this framework through empirical estimation and counterfactual simulations using more granular datasets, thereby 
offering more precise policy insights to promote high-quality agricultural development and advance the goal of building a 
strong agricultural nation.
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