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Abstract: This study examines the performance of a predictive model for building HVAC electric load demand under 
three distinct conditions. The analysis focuses on two key metrics: the coefficient of variation of the root mean square 
error (CVRMSE) and the coeffi  cient of determination (R²). Results indicate a notable disparity in model fi tting across the 
conditions. For conditions 1 (learning rate =0.0001, hidden layer =7) and 3 (learning rate =0.0001, hidden layer =5), an 
increase in iteration rounds leads to a decrease in CVRMSE, signifying enhanced prediction accuracy. Conversely, condition 
2 (learning rate =0.01, hidden layer =7) exhibits an increase in CVRMSE with more iterations, suggesting reduced accuracy. 
The R² values consistently rise with additional iterations across all conditions, indicating improved model fit. However, 
condition 2 presents a slightly larger discrepancy between the training and test sets compared to conditions 1 and 3. These 
fi ndings highlight the varying impacts of iteration on model performance across diff erent scenarios. The study underscores 
the importance of tailoring model parameters, such as learning rate and hidden layers, to specific conditions to optimize 
predictive accuracy. This research contributes to the understanding of how iterative processes and model confi gurations aff ect 
the accuracy and reliability of HVAC load predictions, off ering insights for future model development and application in 
energy management systems.
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1.Introduction
Energy is a crucial foundation for a country’s long-term stable development. However, as society continues to develop, 
modernization is rapidly advancing. With population growth, the demand for a higher quality of life increases, leading to a 
rising demand for energy. Energy production is gradually failing to keep up with consumption, resulting in an energy crisis. 
Nowadays, it has become the most concerned global issue. According to Energy Information Administration (EIA) of the 
US, global energy demand is expected to rise by 50% over the next 30 years, with carbon emissions projected to increase 
by 35% compared to 2020 [1]. Among the global energy consumption, the building sector contributes to 36 % [2], the heating, 
ventilation, and air conditioning (HVAC) system accounts for about 50% [3] of the total energy consumption in a typical 
building. Therefore, optimizing HVAC operations off ers signifi cant potential for energy savings. Among the existing methods 
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for optimizing operations, deep learning models present significant advantages. These models can use raw data to predict the 
short-term power demand of HVAC systems. This allows for the identification of daily peaks and troughs in power demand 
and helps outline the approximate demand curve. By analyzing the influence of each variable on power demand, deep 
learning models enable the development of more effective energy-saving plans.
Currently, there are three main types of methods for predicting energy consumption: white-box models, black-box models, 
and grey-box models. The white-box model is a physical energy model of a building, based on detailed building parameters 
and heat balance equations. However, it is time-consuming and requires prior knowledge. The grey-box model combines 
building physical information with historical data sources. But a notable disadvantage is that it does not account for internal 
heat gains and occupant behavior [4]. The most representative of these is the RC model (resistance-capacitance model), a 
widely used hybrid model. It effectively represents both the physical components of a building and its dynamic processes. 
For example, it models heat transfer through the external envelope and changes in regional air. Usually, physical models offer 
higher prediction accuracy compared to statistical models. However, developing detailed physical energy models for each 
building can be a tedious task. As an alternative, black-box models have gained popularity in recent years due to the rapid 
development of big data technologies.
Based on previous studies, some studies have identified a variety of machine learning algorithms. Common algorithms 
include Support Vector Regression (SVR) [5, 6], Random Forest (RF) [6, 7], XGBoost [8, 9], Deep Learning, and Artificial Neural 
Networks (ANNs) [10]. ANN is a nonlinear statistical algorithm inspired by biological neural network, which has powerful 
learning, training and prediction functions. 
The BP neural network is a common artificial neural network model known for its strong nonlinear mapping ability and 
adaptability. In this study, the BP neural network is used to model the HVAC electric load demand of buildings. The neural 
network is trained and optimized using historical data. Once training is complete, new data is input into the neural network 
for prediction, yielding the corresponding output results. Through this method, the key parameters such as learning rate and 
the number of hidden layers are explored. The proposed method, based on the BP neural network prediction model, offers 
several advantages: (1) It has strong nonlinear mapping ability and adaptability, allowing for more accurate predictions 
of electric load demand; (2) It features low computational complexity, enabling fast predictions. The HVAC electric load 
demand prediction method is implemented using the MATLAB programming language, and the method’s effectiveness and 
accuracy are verified. The research findings provide valuable insights for the rational planning of air-conditioning electric 
load demand. 

2. Methods
2.1 Determination of influencing factors
The electricity consumption of air conditioning systems generally includes three main components: the heating and cooling 
sources, the working fluid transmission systems, and the air conditioning units along with terminal equipment. Each of these 
components involves numerous and complex influencing factors, resulting in a wide variety of elements affecting the overall 
air conditioning load. Therefore, it is necessary to analyze and identify the primary influencing factors. Below are several key 
areas:
Building Characteristics and Thermal Load Factors: This section focuses on building area and volume, the thermal insulation 
performance of the building envelope, and fresh air requirements. These factors significantly influence the thermal load and, 
consequently, the electricity consumption of air conditioning systems.
External Environment and Climatic Factors: Outdoor temperature, humidity, and wind speed are critical external factors 
impacting power consumption. Understanding these climatic influences is essential for accurate load prediction and energy 
management.
Air Conditioning System Factors: This includes the system type, equipment energy efficiency, pipeline design, and control 
systems. These internal factors determine how effectively the system operates and its overall energy efficiency.
This study begins by introducing the data sources for air conditioning load. A literature review is conducted to select factors 
influencing electricity demand, ensuring a comprehensive analysis of the factors affecting air conditioning load. Next, 
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the preprocessing process of load data is described in detail. By constructing and selecting features, the diversity of input 
parameters for the model is enriched. Finally, the evaluation metrics for load prediction are introduced, and appropriate 
metrics are selected to ensure the accuracy of the model’s predictions.

2.2 Data description
The data to be analyzed in this research are retrieved from a small office building. The total floor area is around 522.0 m2. 
One month data are collected with a collection interval of 60 min. The variables included in this database contains five-time 
variables the dry bulb, relative humidity, wind speed, total floor area, cooling temperature set point. The building roof type is 
attic roof with wood joint [11]. The cooling type is air source heat pump. This study selected the most important input feature 
variables in Table 1 to simplify the model, and some not important variables such as airtightness are neglected.

Table 1. Input variable ranges for the small office buildings.

No. Input Feature Variables Unit Value

1 Dry Bulb ℃ [−32.8, 37.0]

2 Dew Point ℃ [4, 100]

3 Relative Humidity % [0, 14.9]

4 Atmos Pressure Pa [81300,102800]

5 Wind Speed m/s [22.78, 25.00]

The power demand of the air conditioning system is related to the indoor and outdoor temperatures, the indoor area and 
Atmos pressure. Feature set is constructed using unsupervised deep learning. As shown in Fig. 1, the deep auto-encoder 
model developed has a symmetric structure with four layers in total.

Fig. 1: Schematic of the deep auto-encoder model for feature extraction.

The entire dataset is divided into training, validation, and testing data with proportions of 70%, 15%, and 15%, respectively. 
Deep learning models include several hidden layers, and the training process is complex. In this study, four parameters of the 
deep learning models are optimized: (1) the number of hidden layers, (2) the dropout ratio at the input layer, (3) the learning 
rate (LR), and (4) the activation function. It should be noted that the number of neurons in each hidden layer is set as constant 
in this study to reduce the computational load associated with parameter optimization. The rule of thumbs in neural network 
is Eq. (1).

					     �
(1)

Since the sample data units are not uniform, it is necessary to normalize the initial data before using MATLAB software to 
train the neural network. Normalization not only accelerates the training speed but also improves the model’s generalization 
ability and expands its scope of application. The normalization process ensures that all input features are on a similar scale, 
which helps the neural network learn more effectively. The normalization formula is as follows:
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						      � (2)

Where, X represents the original data value; Xmin is the minimum value in the dataset, and the Xmax is the maximum value.

3.Results and discussion
As shown in Table 2, three working conditions are set to compare the influence of learning rate (LR) and hidden layer on the 
Electric load demand prediction of building air-conditioning.

Table 2. Working condition setting.

Parameters Condition 1 Condition 2 Condition 3

LR 0.0001 0.01 0.0001

Hidden layers 7 7 5

The Proportion of Testing Data 0.2 0.2 0.2

Fig. 2 illustrates the fitting results under three different conditions, revealing a significant gap among them. The CVRMSE 
(Coefficient of the variation of the root mean square error) values indicate that as the number of iteration rounds increases, 
the overall trend of CVRMSE decreases in working conditions 1 and 3, leading to improved model prediction accuracy. 
In contrast, working condition 2 shows an opposite trend. Similarly, the R² (R2 scores) values increase with more iteration 
rounds across all three conditions. However, the difference between the training set and the test set in condition 2 is slightly 
higher compared to conditions 1 and 3.

Fig. 2: Results: (a) Condition 1, (b) Condition 2, and (c) Condition 3.

Additionally, research indicates that increasing the number of hidden layers can enhance the model’s complexity, thereby 
improving its ability to handle nonlinear problems. This improvement helps the model fit complex data more accurately. 
However, adding more hidden layers also significantly extends the training time. Moreover, too many hidden layers may lead 
to decreased performance on the validation set, as indicated by an increase in CVRMSE.
On the other hand, the choice of learning rate also significantly impacts the model’s training effectiveness. A lower learning 
rate can help the model converge more stably, avoiding overshooting the global optimum. However, if the learning rate is too 
low, it may result in excessively long training times. Conversely, a higher learning rate can speed up training but may cause 
the model to get stuck in local optima, increasing the risk of overfitting. Therefore, it is crucial to find a balance between the 
learning rate and the number of hidden layers during model training to ensure both accuracy and generalization capability.

4.Conclusion
This study underscores the crucial role of learning rate and hidden layer configuration in predicting building HVAC electric 
load demand. The findings indicate that scenarios with a lower learning rate and an optimal number of hidden layers, such as 
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conditions 1 and 3, generally achieve superior prediction accuracy. This is reflected in the decreasing CVRMSE values and 
increasing R² scores as iteration rounds increase. Conversely, condition 2, which employs a higher learning rate, yields less 
favourable outcomes, highlighting the need for careful parameter selection.
The research suggests that adding more hidden layers can improve the model’s capacity to manage complex, nonlinear data. 
However, this can lead to longer training times and potential overfitting, as indicated by higher CVRMSE on the validation 
set. Similarly, while a lower learning rate supports stable convergence, it may extend training duration. In contrast, a higher 
learning rate can speed up training but may cause the model to become stuck in local optima.
Thus, finding the right balance between learning rate and hidden layer configuration is essential for optimizing both the 
model’s accuracy and its ability to generalize. This balance ensures that the model not only fits the training data effectively 
but also performs well on new, unseen data.
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