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Abstract: This study proposes an intelligent prediction-inventory-scheduling closed-loop decision system for near-shore 
supply chain operations. By integrating three core modules-LSTM/Transformer demand forecasting, reinforcement learning 
inventory replenishment, and VRP path planning-the system achieves end-to-end collaborative optimization. An innovative 
“public health emergency” scenario generator is designed to quantitatively evaluate the system’s robustness under extreme 
risks and its cost-inventory balance capability. Through heterogeneous model fusion, multi-objective dynamic optimization, 
and closed-loop feedback mechanisms, a spatiotemporal coupled decision framework is established. The system eff ectively 
mitigates prediction error propagation, optimizes inventory-path coordination, and demonstrates significant resilience 
enhancement during simulated emergencies.
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1.Introduction
The complexity and dynamic nature of nearshore supply chains demand real-time responsiveness and global optimization 
capabilities from decision-making systems. This paper proposes an integrated decision framework based on a closed-loop 
system combining intelligent forecasting, inventory management, and scheduling. By integrating three key modules-LSTM/
Transformer-based demand forecasting, reinforcement learning for inventory replenishment, and VRP (Vehicle Routing and 
Programming) path planning-the framework achieves end-to-end collaborative optimization. The core innovation lies in 
introducing a “public health emergency” scenario generator, which quantifi es system robustness and cost-inventory balance 
effi  ciency under extreme risks, providing methodological support for resilience management in nearshore supply chains.

2.Time series modeling and demand sensing of intelligent prediction module
2.1 Heterogeneous fusion architecture design of LSTM and Transformer
In the intelligent forecasting module, the heterogeneous fusion architecture combining LSTM and Transformer aims to 
leverage their temporal modeling advantages to enhance the accuracy and generalization capability of demand prediction. 
LSTM’s gating mechanism eff ectively captures long-term dependencies in supply chain demand data, making it particularly 
suitable for periodic or trend-based time series. Meanwhile, Transformer’s self-attention mechanism excels at uncovering 
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global dependencies across time steps, demonstrating outstanding performance when processing high-dimensional and non-
stationary data[1]. This architecture employs a hierarchical fusion strategy: LSTM performs local feature extraction at the base 
layer, followed by global feature interaction through Transformer’s encoding layer. The multi-scale predictions are ultimately 
generated via residual connections and normalization layers. This design not only mitigates overfitting risks in complex 
supply chain environments but also optimizes prediction contributions across different time windows through dynamic weight 
adjustment mechanisms. Additionally, a spatial embedding layer is introduced to encode geographical location’s impact on 
demand distribution, enhancing spatiotemporal coupling in coastal supply chain scenarios. The architecture maintains high 
prediction stability under both demand abrupt changes and seasonal fluctuations, providing reliable input for downstream 
inventory and scheduling modules[2].

2.2 Dynamic feature extraction mechanism driven by multi-source data
In the intelligent forecasting module of the near-shore supply chain, a multi-source data-driven dynamic feature extraction 
mechanism serves as the critical component for enhancing demand perception accuracy. Supply chain demands are influenced 
by highly complex factors, including temporal characteristics such as historical sales data and seasonal fluctuations, as well 
as external dynamic variables like market trends, macroeconomic indicators, and social media sentiment. To effectively 
integrate heterogeneous data sources, this mechanism employs a hierarchical feature extraction strategy: First, preprocessing 
raw data through time alignment and missing value filling to ensure spatiotemporal consistency across multi-source data. 
Subsequently, convolutional neural networks are utilized to extract spatial local features, while graph neural networks model 
the topological relationships between supply chain nodes. For dynamic external variables, an online learning module is 
introduced to dynamically update feature weights, preventing prediction bias caused by environmental abrupt changes in 
static models. Additionally, attention mechanisms dynamically allocate contribution weights across data sources-such as 
enhancing sentiment data weight during pandemic peaks and prioritizing historical sales patterns during stable periods. This 
mechanism not only strengthens the model’s ability to capture nonlinear relationships but also provides decision-makers with 
interpretable insights through feature importance analysis, thereby supporting the coordinated optimization of downstream 
inventory and path planning modules[3].

2.3 Analysis of the transmission of forecast error to downstream inventory decision
In the intelligent prediction-inventory-scheduling closed-loop system, the propagation mechanism of demand forecast errors 
directly impacts the robustness and cost efficiency of inventory strategies. Forecast errors can be categorized into systematic 
deviations and random fluctuations, which create cascading effects through replenishment decisions: systematic deviations 
cause long-term inventory levels to deviate from optimal values, manifesting as persistent overstock or stockouts; while 
random fluctuations trigger frequent adjustments in short-term replenishment quantities, increasing operational costs. To 
quantify this transmission process, this paper constructs an error-inventory dynamic response model that decomposes forecast 
errors into three dimensions-amplitude, direction, and persistence-which correspond to safety stock coefficients, reorder 
point thresholds, and replenishment cycle adjustment strategies. Research findings indicate that Transformer models exhibit 
lower directional errors when capturing sudden demand spikes, but their amplitude errors amplify inventory fluctuations 
through reinforcement learning strategies. In contrast, LSTM’s smoothing characteristics suppress short-term volatility but 
may obscure trend changes, leading to delayed responses. To address this, the system introduces an error compensation 
mechanism: dynamically adjusting confidence intervals in downstream inventory modules and re-evaluating forecast 
reliability based on rolling time windows, thereby achieving adaptive buffering within the error propagation chain. This 
analytical framework provides theoretical foundations for understanding the vulnerability of prediction-inventory coupling 
systems and points to improvement directions for robustness optimization under public health emergencies[4].

3.Dynamic inventory replenishment strategy based on reinforcement learning
3.1 Markov decision process and inventory cost modeling
In the design of dynamic replenishment strategies for near-shore supply chains, the Markov decision process provides 
a formal framework for inventory optimization, integrating inventory states, replenishment actions, and cost-return 
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considerations into a unified temporal decision system. The inventory state space encompasses three-dimensional coupling 
of current inventory levels, in-transit orders, and forecasted demand, with transition probabilities dominated by demand 
uncertainty. The action space defines combined strategies for replenishment quantity and timing, requiring simultaneous 
consideration of supplier response delays and transportation constraints. The cost function adopts a dual-objective 
optimization paradigm: explicit costs include procurement costs, holding costs, and stockout penalties, where stockout 
penalties during public health emergencies are modeled as time-dependent exponential functions to reflect increasing 
marginal losses under crisis scenarios. Implicit costs are captured through reinforcement learning’s advantage function, such 
as long-term cooperation risks arising from declining supplier reliability. To balance exploration and exploitation, the strategy 
network employs near-end optimization algorithms while avoiding training instability through KL divergence constraints. 
Additionally, an LSTM-based historical demand encoder is introduced as a state feature extractor to enhance the model’s 
adaptability to non-stationary demand patterns. This modeling approach not only achieves end-to-end coordination between 
inventory decision-making and forecasting modules but also provides robust input for subsequent VRP scheduling through its 
stochastic dynamic planning characteristics[5].

3.2 Design of reward function for dual objective optimization
In reinforcement learning-based dynamic inventory replenishment strategies, designing reward functions requires precise 
balancing of the dynamic interplay between stockout losses and holding costs, which constitutes the core challenge for supply 
chain cost optimization. Stockout losses exhibit nonlinear growth characteristics in extreme scenarios like public health 
emergencies, encompassing not only direct sales losses but also indirect costs such as declining customer trust and shrinking 
market share. Holding costs include warehousing expenses, capital occupation, and product expiration risks. Notably, 
regional warehouse resource constraints in nearshore supply chains lead to spatial heterogeneity in unit inventory costs. 
This study employs a segmented reward function architecture: during normal operations, linear weighting converts two cost 
categories into a unified reward signal with dynamically calibrated weights based on historical data. During crisis scenarios, 
the system switches to an asymmetric penalty mode, imposing exponentially increasing penalties for stockout states while 
introducing inventory turnover constraints to prevent overstocking. To enhance adaptability, the function incorporates a 
demand fluctuation sensing module that automatically adjusts penalty curvature parameters when detecting sudden demand 
changes. This dynamic equilibrium mechanism not only resolves the failure of traditional static weighting strategies during 
emergencies but also enables the system to gradually approach Pareto optimality boundaries through reinforcement learning’s 
policy gradient updates, providing an inventory benchmark[6] that balances economic efficiency and robustness for future VRP 
scheduling.

3.3 Real-time feedback mechanism of forecast results and inventory strategy
In the intelligent prediction-inventory-scheduling closed-loop system, the real-time feedback mechanism between forecast 
results and inventory strategies serves as the core link for dynamic optimization. This mechanism establishes a two-way 
information flow, continuously comparing and calibrating the outputs from upstream forecasting modules with the execution 
effects of downstream inventory decisions, thereby forming an adaptive strategy adjustment cycle[7]. Specifically, demand 
distribution parameters provided by the forecasting module not only serve as initial inputs for inventory strategies but also 
undergo real-time matching with operational data such as actual inventory consumption and replenishment delays through 
time-sliding windows, calculating confidence metrics. When confidence falls below a threshold, the system automatically 
triggers a strategy optimization process: On one hand, reinforcement learning agents reassess value functions based on 
latest data to adjust replenishment cycles and safety stock levels; on the other hand, prediction error characteristics are 
backpropagated to LSTM/Transformer models, prompting online fine-tuning of network parameters. To address extreme 
scenarios like public health emergencies, the feedback mechanism features a crisis response mode that activates inventory 
buffer strategies through scenario generators simulating disturbance signals, gradually reverting to normal strategies during 
post-event recovery phases. This closed-loop feedback architecture not only resolves the disconnect between prediction 
and execution in traditional supply chains but also significantly enhances decision resilience and operational efficiency in 
nearshore supply chains under uncertain environments through continuous self-correction, as shown in Table 1.
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Table 1 Comparison of key performance indicators between forecast results and real-time feedback mechanism of inventory 
strategy

metric No feedback 
mechanism

Closed-loop feedback 
mechanism

Improvement magni-
tude (%)

Prediction accuracy (MAPE) 18.2% 12.5% 31.3%

Inventory Turnover Rate (times/year) 6.8 8.4 23.5%

Stockout rate 15.7% 9.2% 41.4%

Average restocking response time (h) 24.5 18.3 25.3%

Total operating cost reduction rate - 17.6% -

Note: The data is based on a six-month system test cycle, comparing the traditional static strategy with the closed-loop 
feedback mechanism proposed in this paper. The improvement is calculated based on the no-feedback mechanism.

4.Closed-loop collaborative optimization of VRP scheduling module
4.1 Joint constraint modeling of demand-inventory-path
In the closed-loop collaborative optimization of VRP scheduling modules, the joint constraint modeling of demand-inventory-
path integration serves as a critical technical approach to achieve dynamic coupling across supply chain stages. This 
framework constructs a multidimensional decision space that unifies temporal characteristics of upstream demand forecasting, 
safety stock strategies in inventory management, and spatial topological structures of path planning, forming a spatiotemporal 
constraint network. Temporally, the model incorporates dynamic updates in demand forecasting by quantifying the alignment 
between replenishment cycles and delivery windows as soft constraints, enabling flexible scheduling through penalty 
functions for sudden demand surges. Spatially, leveraging the regional characteristics of near-shore supply chains, a dual-
layer path network is designed: an upper layer handles trunk transportation between distribution centers, while a lower layer 
optimizes last-mile delivery at terminal facilities, interconnected via capacity constraints at inventory transfer nodes. Notably, 
the model introduces a dynamic accessibility matrix to dynamically adjust connectivity weights in response to regional 
lockdown risks caused by public health emergencies. The constraint solution employs an improved column generation 
algorithm that embeds inventory cost terms into the objective function, ensuring path planning minimizes both transportation 
distance and maintains node-level inventory balance. This integrated modeling methodology overcomes the limitations of 
traditional VRP problems that separate demand and path optimization, providing a globally oriented scheduling solution for 
closed-loop systems with significantly enhanced resilience under extreme disturbances[8].

4.2 Real-time response algorithm for time-varying road network and dynamic order
In VRP scheduling for near-shore supply chains, time-varying network conditions and dynamic order fluctuations pose core 
challenges for path optimization. This algorithm establishes a spatiotemporal coupled response framework that enables 
bidirectional adaptation between traffic conditions and order demands. At the network modeling level, a spatiotemporal graph 
convolutional network captures dynamic traffic patterns, encoding historical traffic volumes, real-time events, and weather 
factors into multi-dimensional edge weights to reflect varying passage efficiency across time periods. For order processing, 
a trigger-based dynamic insertion mechanism is designed: when new orders arrive or demand forecasts update, the system 
rapidly evaluates their impact on existing path plans through constrained neighborhood search, then determines optimal 
insertion positions via regret value sorting. To balance real-time responsiveness with optimization efficiency, the algorithm 
employs a hierarchical optimization strategy: the top layer utilizes deep Q-networks to learn macro-level allocation strategies, 
while the bottom layer applies adaptive large-scale neighborhood search for local path fine-tuning. These components 
collaborate through shared spatiotemporal state representations. Notably, the algorithm integrates risk probability maps 
generated by scenario generators to preset detour redundancy during path evaluation when regional traffic restrictions occur 
due to public health emergencies. This real-time response mechanism transforms traditional static VRP optimization into a 
continuously evolving dynamic decision-making process, significantly enhancing service stability and cost controllability in 
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closed-loop systems under uncertainty through proactive interaction with changing environments.

4.3 Robust compensation of information delay in closed-loop system
In intelligent prediction-inventory-scheduling closed-loop systems, information delays pose critical challenges to real-
time decision-making accuracy, particularly in complex nearshore supply chains with strong spatiotemporal dependencies. 
To address asynchronous information issues caused by data transmission delays, processing lags, or sudden network 
outages, this study proposes a multi-level robust compensation framework. At the data level, a sliding window buffering 
mechanism synchronizes time-series of key metrics like delayed demand forecasts and inventory status, reconstructing 
optimal estimates for missing periods through state estimators. At the decision-making level, a context-aware reinforcement 
learning framework enables inventory replenishment strategies to leverage historical delay patterns for analogical reasoning, 
preventing policy oscillations from information delays. For path planning, a prediction-correction mechanism predicts 
future network conditions using spatiotemporal attention weights generated by ST-GCN when real-time traffic updates are 
delayed, dynamically adjusting path redundancy. To address potential systemic communication failures during public health 
emergencies, the system integrates offline emergency modes that maintain basic operational capabilities through locally 
cached historical optimal strategy libraries. This compensation mechanism not only ensures closed-loop system stability via 
time-delay differential equation theory but also provides gradient-based solutions for various delay scenarios through modular 
design, fundamentally enhancing supply chain resilience and decision reliability in non-ideal information environments.

5.Robustness verification of public health emergency scenarios
5.1 Parametric design of extreme risk scenario generator
In robustness verification of public health emergency scenarios, the parametric design of extreme risk scenario generators 
serves as a critical foundation for assessing supply chain resilience. This generator employs a multi-level parameter system 
to structurally model the spatiotemporal characteristics, propagation patterns, and cascading impacts of emergencies on 
supply chains. At the macro level, it simulates population movement restrictions under different prevention policies using 
the SEIR epidemic model, mapping these constraints into attenuation coefficients for regional logistics capacity. At the meso 
level, a Bayesian network-based multi-tiered interruption probability transmission model is constructed to quantify node 
failure cascading effects across suppliers, distribution centers, and retail terminals. At the micro level, a dynamic demand 
disturbance function is designed to convert behavioral patterns like panic buying and medical supply bottlenecks into non-
stationary demand curve mutations. The parameter calibration process integrates historical pandemic data with expert 
knowledge, employing Monte Carlo sampling to generate statistically significant risk scenario spectra covering severity levels 
from localized lockdowns to global pandemics. This parametric approach not only bridges abstract risks with operational 
constraints but also features a modular architecture that enables rapid rule updates according to emerging emergency 
evolution characteristics, providing scalable testing benchmarks for subsequent cost-inventory balance analyses.

5.2 Cost-inventory Pareto frontier analysis under supply chain disruption
In supply chain disruptions caused by public health emergencies, the trade-off between cost and inventory exhibits significant 
nonlinear characteristics, making traditional single-objective optimization frameworks inadequate for capturing their complex 
dynamics. This study establishes a multi-objective Pareto frontier analysis model to systematically quantify the strategic 
trade-off between inventory redundancy and operational costs during extreme risk scenarios. By incorporating disruption 
intensity, duration, and recovery resilience as core variables, the model employs the ε-constraint method to generate 
non-dominated solution sets, revealing three distinct decision-making zones: Mild disruptions allow marginal inventory 
increases to significantly reduce stockout risks; Moderate disruptions present a critical trade-off threshold requiring dynamic 
safety stock threshold adjustments through reinforcement learning strategies; Severe disruptions demonstrate cost-sensitive 
regions where partial supply cutoffs become inevitable, necessitating prioritized protection of key nodes. The analytical 
framework incorporates spatiotemporal disturbance parameters from scenario generators, enabling Pareto frontiers to reflect 
regional lockdown variations on equilibrium points. This research not only provides decision-makers with a visual resilience 
management tool but also establishes a high-dimensional objective space as a benchmark environment for subsequent 
intelligent algorithm optimization.
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5.3 Vulnerability diagnosis and improvement of inter-module collaborative failure
In extreme risk scenarios, the inter-module coordination of the intelligent prediction-inventory-scheduling closed-loop 
system may fail systematically due to information gaps, decision conflicts, or resource constraints. This study proposes a 
vulnerability diagnosis framework based on complex network theory. By constructing directed weighted graphs of module 
interactions, it quantifies the coupling effects between prediction error propagation, inventory strategy lags, and rigid path 
planning. The diagnostic model identifies three typical failure modes: 1) Temporal mismatch, where short-term demand 
fluctuations in forecasting fail to synchronize with long-term inventory replenishment strategies; 2) Spatial resource conflicts, 
where regional blockades cause geographical misalignment between VRP path optimization and inventory distribution; 3) 
Objective function divergence, where local optimal solutions from individual modules negatively compound overall costs. To 
address these vulnerabilities, the improved solution adopts a federated learning architecture to restructure module interfaces: 
designs cross-module attention mechanisms to align spatiotemporal decision granularity, introduces virtual inventory nodes to 
buffer geographical constraints, and coordinates multi-objective optimization weights through Nash bargaining models. This 
enhanced framework significantly improves the system’s fault tolerance under continuous disturbances, providing a universal 
methodology for resilience design in nearshore supply chains.

6.Conclusions
The intelligent prediction-inventory-scheduling closed-loop system developed in this study significantly enhances deci-
sion-making efficiency for nearshore supply chains under both normal and risk scenarios through algorithmic integration and 
scenario-based validation. Theoretically, the heterogeneous model integration and closed-loop feedback mechanism establish 
a novel paradigm for supply chain resilience research. Practically, the sudden scenario generator reveals the system’s adaptive 
boundaries under extreme disturbances, providing guidance for future research on dynamic weight adjustment and multi-
agent collaboration.
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