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Abstract: Inventory management is a critical component of retail supply chains, directly aff ecting operational effi  ciency, 
customer satisfaction, and profi tability. Traditional approaches to inventory optimization often rely on heuristic rules or static 
mathematical models, which struggle to cope with the high-dimensional, stochastic, and dynamic nature of modern retail 
environments. This paper proposes a novel framework utilizing deep reinforcement learning (DRL) to optimize inventory 
control decisions in end-to-end retail supply chains. The supply chain system is modeled as a Markov Decision Process (MDP), 
where the agent observes states such as stock levels, sales trends, supplier lead times, and demand forecasts. A DRL agent, 
trained with the Deep Deterministic Policy Gradient (DDPG) algorithm, learns to generate real-time replenishment and order-
ing strategies that maximize long-term performance by minimizing costs and avoiding stockouts. Experimental evaluations 
using both simulated and real-world retail data demonstrate that the proposed method outperforms classical baselines such 
as economic order quantity (EOQ) and safety stock models in terms of inventory turnover, service level, and total cost. The 
results suggest that DRL can serve as a robust and adaptive solution to inventory optimization under uncertainty.
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1.Introduction
Inventory optimization is a foundational challenge in retail supply chain management, where the objective is to ensure that 
the right products are available at the right time and location, while minimizing costs associated with overstocking, under-
stocking, and logistics[1]. In contemporary retail environments, characterized by fl uctuating demand, fragmented distribution 
channels, and short product life cycles, traditional rule-based inventory models and static forecasting techniques often fall 
short. These conventional methods typically assume stationarity, linearity, or perfect information, which are rarely present in 
real-world operations[2]. As a result, they may lead to ineffi  ciencies such as stockouts, excess holding costs, and missed sales 
opportunities[3].
Recent advances in artifi cial intelligence have opened new pathways for addressing such dynamic and uncertain supply chain 
problems[4]. In particular, deep reinforcement learning (DRL) has emerged as a promising solution due to its ability to model 
sequential decision-making under uncertainty and learn optimal policies through trial-and-error interactions with complex 
environments[5]. DRL algorithms can integrate real-time data, capture high-dimensional dependencies among supply chain 
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variables, and adapt policies over time without requiring explicit programming of rules or assumptions[6]. These capabilities 
make DRL particularly well-suited for inventory control tasks where decisions must continuously adjust in response to 
evolving market conditions, consumer behaviors, and supplier constraints[7].
This study presents a DRL-based framework for inventory optimization in retail supply chains[8]. By formulating the supply 
chain system as a Markov Decision Process (MDP), the proposed framework allows a DRL agent to observe the system 
state—comprising variables such as historical sales, demand forecasts, inventory positions, and lead times—and generate re-
plenishment actions that maximize long-term rewards[9]. The Deep Deterministic Policy Gradient (DDPG) algorithm, selected 
for its effectiveness in continuous action spaces, is used to train the agent[10]. The reward function is carefully designed to 
balance key performance indicators including service level, holding cost, and stockout penalties[11].
The contributions of this work are threefold. First, it introduces a scalable DRL framework tailored to the inventory 
optimization problem, integrating state-of-the-art policy learning with real-time feature encoding. Second, it incorporates a 
hybrid simulation environment that blends synthetic demand data with real-world retail sales patterns, enabling both robust 
training and rigorous evaluation. Third, it demonstrates through empirical experiments that the DRL-based policy consistently 
outperforms conventional inventory management methods in multiple performance metrics, offering a viable solution for 
next-generation intelligent supply chains.

2.Literature Review
Inventory management has long been a critical area of study in operations research and supply chain theory[12]. Classical mod-
els, including Economic Order Quantity (EOQ), (s, S) policies, and base-stock models, have provided foundational insights 
into how inventory levels should be managed under assumptions of stationary demand and fixed lead times[13]. These models 
are analytically tractable and offer closed-form solutions for simple scenarios, but they often fail to capture the complexities 
of modern retail systems[14]. With increased demand variability, frequent promotions, changing consumer preferences, and 
multi-echelon networks, these traditional models are limited in their ability to respond to dynamic and uncertain conditions[15].
In response to these limitations, more adaptive methods have been developed using heuristic optimization and simula-
tion-based approaches[16]. These methods attempt to capture some of the stochastic elements and temporal dynamics of inven-
tory systems by modeling a broader range of variables and incorporating scenario-based simulations[17]. While these methods 
can offer better flexibility compared to classical approaches, they often require extensive tuning and may not generalize well 
across different environments or over time[18].
The rise of machine learning introduced data-driven techniques for demand forecasting and stock level prediction[19]. These 
models, particularly those based on regression trees, support vector machines, and neural networks, brought significant 
improvements in prediction accuracy[20]. However, most of these applications focus on demand prediction as an isolated task 
rather than integrating prediction directly into inventory decision-making[21]. Moreover, they tend to operate in a supervised 
learning paradigm, optimizing for immediate forecast accuracy without considering the sequential nature of inventory control 
or the delayed consequences of stock decisions[22].
Reinforcement learning (RL), and specifically deep reinforcement learning, provides a compelling alternative for modeling 
inventory systems as interactive environments where an agent learns to take actions that maximize long-term rewards[23]. 
Unlike supervised learning, RL focuses on decision-making in dynamic settings, accounting for the impact of current actions 
on future outcomes[24]. This makes it particularly suitable for multi-step inventory decisions where lead times, backorders, and 
cost trade-offs must be considered[25]. Deep reinforcement learning enhances RL by enabling the handling of high-dimensional 
state and action spaces through deep neural networks[26]. This allows models to learn effective policies even in large-scale, 
real-world retail environments with hundreds or thousands of products and fluctuating demand signals[27].
Recent developments in DRL have also made it feasible to use continuous control policies, which are important in inventory 
management tasks involving non-discrete reorder quantities, variable delivery times, and flexible lot sizes[28]. Moreover, 
advanced policy optimization techniques and experience replay mechanisms have addressed some of the sample inefficiency 
and convergence issues that previously limited the application of RL in industrial contexts[29]. These innovations have enabled 
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more stable and scalable deployments of DRL in supply chain systems.
Despite the growing interest in applying DRL to inventory optimization, there are still gaps in the literature regarding the 
integration of real-time data streams, the interpretability of learned policies, and the robustness of models under distributional 
shifts. Most existing studies are limited to simulated environments with simplifi ed assumptions, and few address full-scale 
end-to-end supply chain settings. This paper seeks to bridge these gaps by proposing a comprehensive DRL framework 
specifi cally designed for the operational realities of retail supply chains, including noisy data, high-dimensional observations, 
and time-sensitive decision requirements.

3.Methodology
This section presents the proposed DRL framework for inventory optimization in retail supply chains. It includes the environ-
ment modeling, state and action representation, learning algorithm, and reward design.

3.1 Environment Modeling and System Setup
The supply chain environment is framed as a MDP, where the agent observes the current inventory levels, demand rates, order 
lead times, and cost indicators, and decides the replenishment quantity at each decision step (typically daily or weekly). The 
environment evolves dynamically, refl ecting real-world uncertainties like fl uctuating demand and supplier delays.
The simulation environment is built with realistic demand distributions and lead time variability. Inventory depletion is 
modeled via a time-series process, and stockouts trigger penalty signals to simulate business losses. The DRL agent learns to 
balance ordering costs with service levels by interacting repeatedly with this environment.

3.2 State and Action Representation
The state vector includes recent sales trends, current stock levels, pending orders, and demand forecasts. These features are 
normalized and encoded using a neural feature encoder. The action space is continuous, representing the quantity of inventory 
to be reordered at each decision point.
The agent outputs actions that are bounded and scaled according to item-specifi c storage limits and budget constraints. This 
formulation allows smooth policy learning while ensuring the feasibility of control signals.

3.3 Learning Algorithm
The agent uses a DDPG algorithm, enhanced with a prioritized experience replay mechanism and target networks for stability. 
The actor network generates replenishment actions, while the critic estimates Q-values for training. Both networks are 
updated via stochastic gradient descent using mini-batches drawn from experience buff ers.
Exploration is encouraged using temporally correlated noise. A soft update mechanism ensures that the target networks evolve 
slowly, stabilizing training.
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3.4 Reward Engineering
The reward function is carefully designed to optimize long-term supply chain performance. It penalizes high holding costs, 
frequent stockouts, and excessive order variability, while rewarding steady fulfi llment rates and cost effi  ciency.
The cumulative reward signal, tracked over training episodes, provides a measure of policy improvement and convergence.
The trained model is periodically evaluated in test environments with unseen demand patterns to ensure generalization. Once 
deployed, the model receives live inventory data, produces daily replenishment suggestions, and continually refi nes itself 
through online learning loops.

4.Results and Discussion
To evaluate the performance of the proposed Deep Reinforcement Learning (DRL)-based inventory optimization framework, 
we conducted experiments on a simulated retail supply chain environment that mimics real-world dynamics. The environment 
consists of multiple products, varying lead times, seasonal demand fluctuations, and capacity-constrained suppliers and 
warehouses. The baseline models used for comparison include (i) traditional rule-based policies (e.g., reorder point), (ii) 
linear programming methods, and (iii) classical Q-learning.
The primary performance indicators include inventory holding cost, stockout rate, total fulfi llment cost, and service level—
a key customer-centric metric. The DRL agent consistently outperformed baseline models across all metrics, especially in 
scenarios with high demand volatility and long lead times. In particular, the agent demonstrated superior generalization 
capability across unseen product categories and market conditions.
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The results show that the DRL policy effectively learned to balance trade-offs: reducing inventory holding costs without 
increasing stockouts, dynamically adjusting reorder quantities based on observed patterns, and adapting pricing and shipment 
frequencies according to demand urgency.

As shown in Figure, the DRL framework achieved a service level of 95.6%, significantly higher than the 88.3% from 
traditional Q-learning and 82.7% from static rule-based policies. This improvement is attributed to the DRL agent’s ability to 
anticipate demand spikes and learn nuanced reorder strategies over time. Furthermore, the DRL agent managed to reduce total 
supply chain costs by up to 18% compared to linear optimization models, which typically rely on short-term forecasts and 
assume fi xed demand distributions.
The discussion also highlighted that exploration noise and target network stabilization played a key role in ensuring training 
convergence. Early-stage experiments without these features resulted in suboptimal or unstable policies. By contrast, 
incorporating prioritized experience replay and soft target updates improved the sample effi  ciency and robustness of learning, 
especially under stochastic demand and supply delays.
Additionally, the policy’s real-time adaptability was tested by introducing sudden disruptions, such as supplier outages and 
demand surges. The DRL model quickly adjusted order strategies, demonstrating resilience and self-correction, which are 
critical features for practical retail deployment.

5.Conclusion
This study proposed a DRL framework for end-to-end inventory optimization in retail supply chains, addressing the 
limitations of traditional static or myopic decision-making approaches. By modeling the supply chain environment as a 
Markov Decision Process and applying actor-critic DRL techniques such as DDPG, the framework enables adaptive and 
context-aware control of inventory replenishment, transportation, and fulfi llment strategies.
The framework integrates real-time data processing, dynamic state encoding, and reward shaping to refl ect operational trade-
offs such as service level versus holding cost. Through simulation experiments, we demonstrated that the proposed DRL 
model outperforms classical methods—including rule-based heuristics and linear optimization—in key performance metrics 
such as stockout rate, fulfillment cost, and overall service level. It not only learns effective reorder policies under stable 
conditions but also exhibits resilience to dynamic disturbances like demand surges and supply chain disruptions.
Furthermore, the ability of the DRL agent to adapt to evolving conditions and generalize across diff erent product categories 
suggests strong potential for deployment in real-world retail systems. Unlike static models that require frequent manual 
retuning, the proposed framework enables continuous self-improvement, making it a promising solution for data-driven, 
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scalable, and intelligent supply chain optimization.
Future work could explore the integration of multi-agent reinforcement learning to support distributed decision-making across 
warehouses, stores, and suppliers. Additionally, incorporating richer state features such as customer sentiment, competitor 
pricing, and macroeconomic indicators may further enhance the decision-making capabilities of the model.
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