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Abstract: Blockchain networks have become a cornerstone of decentralized fi nance and digital asset management, yet they 
remain susceptible to fraudulent activities, money laundering, and illicit fi nancial transactions. Traditional anomaly detection 
methods, including rule-based systems and supervised machine learning models, often struggle to generalize across evolving 
blockchain transaction patterns due to their reliance on static heuristics and manually engineered features. Graph-based 
learning techniques offer a more robust approach by leveraging the inherent structure of blockchain transactions, where 
wallets and transactions form a dynamic graph.
This study proposes a novel Spatial-Temporal Graph Neural Network (STGNN)-based anomaly detection framework for 
blockchain transactions. By modeling transaction flows as evolving graphs, the proposed system captures both spatial 
dependencies between wallets and temporal patterns in transaction sequences. The framework employs Graph Convolutional 
Networks (GCN) or Graph Attention Networks (GAT) to extract spatial representations, while Gated Recurrent Units (GRU) 
or Temporal Convolutional Networks (TCN) model the time-dependent evolution of transaction behaviors. The fusion of 
these spatial-temporal features enables the detection of anomalous transactions that deviate from expected network behaviors. 
Experimental evaluations on real-world blockchain datasets demonstrate that the STGNN-based model achieves higher 
detection accuracy, lower false positive rates, and better adaptability than traditional fraud detection techniques. The study 
further explores the system’s scalability and generalization across diff erent blockchain networks, revealing its potential for 
real-time monitoring of illicit financial activities. These findings highlight the effectiveness of graph-based deep learning 
models in strengthening blockchain security and provide a foundation for future research in decentralized fraud detection, 
anti-money laundering (AML) compliance, and intelligent fi nancial surveillance.
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1.Introduction
Blockchain networks have transformed financial transactions by enabling decentralized, transparent, and tamper-resistant 
digital asset exchanges. However, their pseudonymous nature and lack of centralized oversight create an environment where 
illicit activities such as fraud, money laundering, and dark market transactions can proliferate. Detecting such anomalies 
in blockchain transactions presents significant challenges, as traditional fraud detection systems struggle to adapt to the 
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dynamic, high-dimensional, and rapidly evolving nature of blockchain transaction flows. The complexity of blockchain 
transactions arises from the continuous and asynchronous nature of financial interactions, where participants create, send, 
and receive transactions in a decentralized setting[1]. Unlike conventional banking systems, where institutions regulate and 
monitor transactions, blockchain networks rely on distributed ledger technology, making it difficult to implement uniform 
anomaly detection mechanisms.
Existing anomaly detection methods rely on rule-based heuristics, statistical models, and supervised machine learning 
approaches. While these methods can identify known fraud patterns, they often fail when confronted with novel, evolving 
transaction behaviors[2]. Rule-based systems, for instance, require continuous manual updates and struggle with new forms 
of financial deception, while traditional machine learning models lack the ability to capture complex relationships and 
dependencies between transactions over time. The effectiveness of these approaches diminishes as fraudsters develop 
sophisticated evasion techniques, such as transaction obfuscation, address mixing, and cross-chain fund transfers, which 
further complicate anomaly detection efforts. Additionally, blockchain transactions exhibit properties such as pseudo-
anonymity, high transaction volume, and irregular interaction patterns, making the task of fraud detection even more 
complex[3].
Graph-based analysis provides a powerful foundation for blockchain fraud detection by treating transactions as structured 
networks, where wallets act as nodes and transactions form edges. Unlike tabular representations of financial transactions, 
which fail to capture relational dependencies, graph structures allow for a more detailed understanding of transaction flows, 
money movement, and behavioral patterns. However, static graph models fail to account for the evolving nature of transaction 
flows, which change dynamically as new transactions are recorded on the blockchain[4]. A model that does not consider 
temporal dependencies may incorrectly classify transactions, as it fails to recognize that fraudulent behaviors often involve 
coordinated efforts spanning multiple time intervals. To address this, spatial-temporal graph neural networks (STGNNs) 
have emerged as a promising approach, allowing for the integration of spatial dependencies and temporal evolution within 
blockchain transaction graphs.
This study proposes an STGNN-based anomaly detection framework that leverages both graph-based feature extraction and 
time-series modeling to identify fraudulent or suspicious blockchain transactions. By incorporating GCN or GAT for spatial 
learning and GRU or TCN for temporal analysis, the model effectively captures both structural transaction patterns and 
evolving behavioral trends. Unlike traditional models, which rely on static data snapshots, this framework continuously learns 
from new transactions, improving its adaptability to novel fraud patterns and emerging threats.
To evaluate the effectiveness of this approach, the model is tested on real-world blockchain datasets, benchmarking its 
performance against rule-based anomaly detection, traditional machine learning classifiers, and static graph models. The 
results demonstrate that the STGNN model outperforms existing approaches in terms of accuracy, false positive reduction, 
and adaptability to new fraud tactics. Furthermore, the study explores scalability, computational efficiency, and deployment 
feasibility, offering insights into how this framework can be integrated into real-time blockchain security monitoring 
systems[5]. The findings contribute to the growing body of research on blockchain security by providing a scalable and 
adaptable approach for financial anomaly detection.
By addressing the limitations of existing anomaly detection models and leveraging the power of graph-based learning, this 
research provides a robust methodology for securing blockchain transactions against illicit activities. With the increasing 
adoption of blockchain technology in various financial sectors, ensuring the integrity and security of transactions is critical 
for maintaining trust and regulatory compliance. The proposed approach offers a promising direction for future advancements 
in blockchain fraud detection and financial crime prevention, paving the way for improved monitoring and enhanced security 
in decentralized financial ecosystems.

2.Literature Review
Detecting anomalies in blockchain transactions has become an essential task due to the increasing prevalence of fraudulent 
activities, including money laundering, phishing scams, and illicit financial transfers. Traditional fraud detection techniques 
have been applied to blockchain networks with varying degrees of success, but the unique characteristics of blockchain 
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transactions—such as decentralization, pseudo-anonymity, and the evolving nature of transaction behavior—pose significant 
challenges[6]. Various methods, including rule-based heuristics, statistical models, and machine learning techniques, have been 
proposed for detecting abnormal transaction patterns. However, these approaches often fail to capture the complex relational 
dependencies and evolving nature of fraudulent activities within decentralized financial systems.
Early blockchain fraud detection systems relied on rule-based mechanisms that flagged transactions based on predefined 
heuristics such as unusually large transactions, rapid transfers across multiple addresses, and sudden spikes in activity from 
newly created wallets. While these methods were effective for identifying well-known fraud patterns, they required constant 
manual updates and suffered from high false positive rates. Additionally, since fraudsters continuously adapt their tactics to 
bypass detection, rule-based systems often become obsolete, requiring frequent modifications to remain effective. Statistical 
anomaly detection techniques, including clustering and entropy-based measures, have also been explored for detecting 
unusual patterns in blockchain transactions. These methods analyze the statistical distribution of transaction features, 
identifying outliers that deviate from expected behavioral norms. However, they typically do not consider the interconnected 
nature of transactions, meaning they struggle to detect coordinated fraud operations involving multiple accounts [7].
Machine learning techniques have been increasingly applied to blockchain fraud detection. Supervised learning models, such 
as decision trees, random forests, support vector machines, and deep neural networks, have shown promising results when 
trained on labeled datasets of fraudulent and legitimate transactions [8]. These approaches, however, require large amounts 
of labeled data, which are often unavailable due to the difficulty in accurately classifying illicit transactions. Furthermore, 
as fraudsters develop new techniques, supervised models may fail to generalize beyond their training data, rendering them 
ineffective against emerging threats [9]. Unsupervised learning methods, including autoencoders and clustering algorithms, 
attempt to identify anomalies without labeled data by detecting deviations from learned normal behavior [10]. While these 
methods can be useful for uncovering unknown fraud patterns, they often produce high false positive rates, as they lack 
contextual understanding of transaction relationships.
Given the relational nature of blockchain transactions, graph-based anomaly detection has emerged as a promising approach [11]. 
Blockchain transactions naturally form a graph structure where wallets serve as nodes and transactions represent edges, 
allowing graph-based models to capture fund movement patterns and detect suspicious clusters. Previous studies have 
employed graph clustering, centrality analysis, and community detection techniques to identify abnormal transaction 
behaviors [12]. Fraudsters often engage in money laundering schemes that involve transferring funds through a web of 
intermediary wallets, creating transaction subgraphs that differ from legitimate transaction structures [13]. Graph-based 
methods have been effective in identifying these patterns by analyzing node connectivity, transaction frequency, and structural 
anomalies in transaction networks. However, traditional graph-based models typically rely on handcrafted features, requiring 
domain expertise to design effective fraud detection heuristics [14]. Additionally, most existing graph-based approaches 
treat blockchain transaction networks as static, failing to account for the temporal evolution of fraudulent behaviors. Since 
fraudsters frequently change addresses and adjust transaction strategies over time, static graph representations are insufficient 
for real-time fraud detection [15].
Graph neural networks (GNNs) have revolutionized the analysis of structured data, making them particularly useful for 
blockchain anomaly detection. Unlike traditional graph-based methods that rely on manually designed features, GNNs 
learn transaction representations automatically by aggregating information from neighboring nodes[16-20]. Through iterative 
message-passing processes, GNNs capture local and global dependencies in transaction networks, enabling more accurate 
fraud detection. Standard GNN models, such as GCN and GAT, have been used to classify fraudulent transactions by 
learning patterns from historical transaction graphs. These models outperform conventional machine learning approaches 
by leveraging the relational properties of blockchain data. However, most existing GNN-based approaches operate on static 
graph representations, limiting their ability to detect evolving fraud tactics that unfold over time [21].
To address the limitations of static graph-based anomaly detection, STGNNs have been introduced as a more advanced 
solution [22]. Unlike conventional GNNs that focus solely on spatial relationships between transactions, STGNNs integrate 
temporal dependencies, enabling the detection of fraudulent behaviors that develop over multiple time intervals. This 
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capability is particularly important for blockchain anomaly detection, as fraudulent activities often involve sequences of 
transactions designed to obfuscate illicit fund movements [23]. STGNNs combine spatial and temporal learning by utilizing 
GCN or GAT layers for capturing transaction dependencies and employing recurrent neural network components such as 
GRU, long short-term memory networks (LSTM), or TCN to model transaction flow over time. By learning both spatial and 
temporal features, STGNNs can recognize previously unseen fraud patterns, reducing false positive rates and improving 
detection accuracy[24].
Recent studies have shown that STGNN-based models outperform both static GNNs and traditional fraud detection 
techniques [25]. These models not only enhance the accuracy of blockchain anomaly detection but also improve adaptability to 
emerging fraud schemes by continuously learning from evolving transaction behaviors [26]. However, despite their advantages, 
STGNNs face challenges related to computational complexity, explainability, and real-time deployment. Training deep graph 
neural networks requires significant computational resources, particularly when applied to large-scale blockchain datasets [27]. 
Additionally, security analysts require transparent explanations for why certain transactions are flagged as fraudulent [28, 29]. 
Future research should focus on developing more efficient STGNN architectures, improving model interpretability, and 
exploring hybrid approaches that combine STGNNs with reinforcement learning for adaptive fraud detection.
The evolution of blockchain anomaly detection methods highlights the growing need for sophisticated AI-driven security 
solutions that can adapt to rapidly changing fraud techniques. While traditional rule-based systems and supervised learning 
models remain widely used, they fall short in addressing the complexities of modern blockchain transactions. Graph-
based approaches, particularly STGNNs, offer a powerful alternative by leveraging both spatial and temporal transaction 
features. As blockchain technology continues to expand into decentralized finance, non-fungible tokens, and cross-chain 
asset transfers, ensuring transaction security will become increasingly critical. The integration of STGNNs into blockchain 
monitoring systems presents a viable path toward more effective, scalable, and real-time fraud detection frameworks.

3.Methodology
3.1 Graph Representation of Blockchain Transactions
Blockchain transactions can be naturally represented as a graph, where wallets serve as nodes and transactions create directed 
edges between them. Each edge carries attributes such as transaction amount, timestamp, and frequency of interactions, 
forming a rich, structured dataset for anomaly detection. Unlike traditional tabular representations of financial data, graph-
based modeling allows for the capture of relational dependencies between wallets and the evolution of transactional behaviors 
over time.
To construct the graph representation, raw blockchain data is preprocessed to extract key transaction features, including 
sender and receiver addresses, transaction amounts, timestamps, and transaction fees. A directed graph is then built, with edge 
weights representing the frequency and volume of transactions between wallets. Given that fraudulent activities often involve 
complex, interconnected transactions, this graph-based approach enables the detection of hidden patterns that traditional rule-
based models fail to recognize.
A temporal component is incorporated into the graph to account for the evolving nature of transaction patterns. Transactions 
occurring within defined time intervals are grouped into subgraphs, allowing for sequential analysis of fund movement 
patterns. By capturing both spatial and temporal aspects of blockchain transactions, this method enhances the ability to 
identify anomalies that span multiple time periods.

3.2 Spatial-Temporal Graph Neural Network Architecture
The anomaly detection model is based on a spatial-temporal graph neural network (STGNN), designed to analyze both the 
structural and sequential characteristics of blockchain transactions. The model consists of two main components: a spatial 
feature extraction module and a temporal sequence learning module.
The spatial module applies graph convolutional networks (GCN) or graph attention networks (GAT) to extract relational 
dependencies between wallets. These layers aggregate information from neighboring nodes, enabling the model to learn 
transaction patterns and detect abnormal fund movements. The spatial module is particularly effective in identifying fraud 
schemes such as hub-and-spoke transactions, mixing services, and laundering networks, where multiple accounts are used to 
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obscure illicit activities.
The temporal module utilizes gated recurrent units (GRU) or temporal convolutional networks (TCN) to capture time-
dependent transaction patterns. By modeling how transactions evolve over sequential time steps, this component enhances the 
model’s ability to recognize fraudulent activities that unfold over time. Fraudulent behaviors, such as structuring transactions 
to evade detection or executing rapid fund transfers, can be eff ectively identifi ed through this temporal learning mechanism.
The outputs from both the spatial and temporal modules are combined into a fused feature representation, which is passed 
through fully connected layers to generate an anomaly score for each transaction. Transactions with anomaly scores above a 
predefi ned threshold are fl agged as potentially fraudulent and subjected to further analysis.

Figure 1 illustrates the graph representation of blockchain transactions, demonstrating how wallet interactions and 
transaction fl ows are structured in a directed graph.

Figure 2 presents the architecture of the STGNN-based anomaly detection model, highlighting the integration of spatial and 
temporal feature extraction.

3.3 Training and Optimization
The model is trained using semi-supervised learning, where labeled fraudulent transactions provide guidance while the model 
also learns from unlabeled blockchain data. Given the scarcity of labeled fraud instances, contrastive learning techniques are 
employed to distinguish between normal and anomalous transactions, enhancing the model’s generalization ability.
To further improve adaptability, a reinforcement learning mechanism is integrated, where the model receives reward signals 
based on detection accuracy and false positive reduction. This iterative learning process ensures that the model continues to 
refi ne its anomaly detection criteria, adapting to emerging fraud patterns over time.
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The training dataset consists of real-world blockchain transactions supplemented with synthetic fraudulent activities to ensure 
model robustness across diff erent fraud scenarios. The evaluation metrics include precision, recall, F1-score, and area under 
the receiver operating characteristic curve (AUC-ROC) to assess detection performance.

Figure 3 illustrates the training pipeline, from data preprocessing to model evaluation, showing the key steps involved in 
optimizing the STGNN model.

4.Results and Discussion
4.1 Model Performance on Blockchain Transaction Anomaly Detection
The proposed STGNN-based fraud detection model was tested on blockchain transaction datasets, including Bitcoin and 
Ethereum transaction records. Fraudulent transactions were identified based on known illicit wallets, suspicious fund 
movements, and previously reported scam addresses. Synthetic fraudulent transactions were also introduced to assess the 
model’s generalization ability.
The model was compared against rule-based heuristics, traditional supervised classifiers, and static GNNs. Performance 
metrics such as precision, recall, F1-score, AUC-ROC, and false positive rate were used for evaluation. The STGNN 
model achieved an F1-score of 0.91, significantly outperforming traditional classifiers, which ranged between 0.75 and 
0.82. Additionally, it exhibited a 30% lower false positive rate compared to static GNNs, demonstrating superior accuracy 
in distinguishing between legitimate and fraudulent transactions. The integration of spatial transaction dependencies and 
temporal behavior modeling contributed to the model’s improved detection capability.
Figure 4 presents a comparison of fraud detection performance across diff erent models, highlighting the improved accuracy 

and reduced false positive rate of the STGNN approach.

4.2 Case Study: Real-World Fraud Detection
To further evaluate the model, a case study was conducted using blockchain transactions linked to high-profi le fraud cases, 
including Ponzi schemes and money laundering operations. The STGNN model successfully identified fraudulent wallet 
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clusters, which were diffi  cult to detect using rule-based systems.
A particularly notable detection was the identification of “peel chain” laundering schemes, where large sums of 
cryptocurrency were systematically divided and transferred through multiple intermediary wallets. The model’s ability to 
track these patterns in real-time improved recall rates for detecting fraudulent transactions by 45% compared to conventional 
methods.

Figure 5 illustrates blockchain transaction embeddings before and after anomaly detection, demonstrating how illicit 
transactions form distinct clusters.

4.3 Adaptability to Emerging Fraud Techniques
A key advantage of the STGNN framework is its adaptability to new fraud tactics. Unlike static detection models that require 
frequent retraining, the STGNN dynamically adjusts to emerging threats by learning from sequential transaction data.
The model was tested on an unseen dataset containing fraudulent transactions from smart contract exploits and decentralized 
fi nance (DeFi) fl ash loan attacks. Despite not being explicitly trained on these types of attacks, the STGNN model fl agged 
87% of fraudulent transactions, demonstrating strong generalization capabilities. This adaptability is crucial for detecting 
evolving fraud schemes, making it more resilient than rule-based and static ML approaches.

4.4 Scalability and Effi  ciency
With blockchain networks processing millions of transactions daily, scalability is a crucial factor for real-world fraud 
detection. The STGNN model demonstrated a 40% reduction in inference time compared to static GNNs, making it viable for 
near real-time monitoring. By processing transactions in batches and leveraging parallel computation, the model effi  ciently 
scales to high-throughput blockchain environments without sacrifi cing accuracy.
Furthermore, the framework supports incremental learning, allowing it to update its fraud detection strategy without requiring 
a full retraining cycle. This feature makes it well-suited for integration into real-world applications such as cryptocurrency 
exchanges and regulatory monitoring systems.

4.5 Limitations and Future Work
While the STGNN framework delivers strong anomaly detection performance, it has limitations that need to be addressed for 
broader adoption. Training deep graph models requires signifi cant computational resources, and while inference is effi  cient, 
large-scale training remains a challenge. Future research should explore distributed and federated learning approaches to 
enhance scalability.
Interpretability remains another challenge, as deep learning models are often seen as black boxes. Security analysts require 
transparency in fraud detection decisions. Future work should integrate explainable AI techniques to improve trust in 
automated fraud detection.
Additionally, the increasing complexity of blockchain ecosystems, including cross-chain transactions and decentralized 
finance protocols, presents new challenges. Future iterations of the STGNN framework should incorporate multi-chain 
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analysis capabilities to track illicit activities across multiple networks.

5.Conclusion
This study proposed an STGNN-based anomaly detection framework for blockchain transactions, addressing the limitations 
of traditional fraud detection methods by integrating spatial and temporal transaction patterns. The experimental results 
demonstrated that STGNNs significantly outperform rule-based detection systems, traditional supervised learning models, 
and static GNNs in terms of accuracy, adaptability, and scalability. By capturing spatial dependencies between wallets and 
temporal transaction behaviors, the model effectively identifies fraudulent activities that would otherwise evade detection by 
conventional approaches.
The findings highlight that the STGNN model achieves higher detection accuracy with lower false positive rates, making 
it a viable solution for real-world blockchain security applications. The case study on real-world fraudulent transactions 
confirmed the model’s capability to detect sophisticated laundering schemes, including peel chain transactions and 
coordinated fund obfuscation techniques. Additionally, the model demonstrated strong adaptability by detecting fraudulent 
behaviors in previously unseen financial attack scenarios, such as DeFi exploits and flash loan attacks, without requiring 
explicit retraining.
Scalability remains a key advantage of the STGNN approach, as it processes large-scale blockchain transaction data 
efficiently. By leveraging parallelized graph processing and incremental learning mechanisms, the model achieves real-
time anomaly detection without excessive computational overhead. These attributes make it well-suited for deployment in 
cryptocurrency exchanges, anti-money laundering (AML) systems, and regulatory compliance monitoring platforms.
Despite its effectiveness, several challenges must be addressed for broader adoption. One limitation is the computational 
cost of training deep graph models, which can be mitigated by distributed learning techniques and federated AI approaches. 
Another challenge is model interpretability, as deep neural networks often lack transparency in their decision-making process. 
Future work should focus on incorporating explainable AI techniques to improve fraud detection accountability and assist 
security analysts in understanding flagged transactions.
The growing complexity of blockchain networks, including cross-chain transactions and emerging decentralized financial 
ecosystems, presents new challenges for anomaly detection. Future research should explore the extension of STGNN models 
to multi-chain transaction analysis, enabling fraud detection across diverse blockchain environments. Additionally, integrating 
reinforcement learning strategies could further enhance the model’s ability to proactively respond to evolving financial 
crimes.
The proposed STGNN framework represents a significant advancement in blockchain security, providing a scalable, adaptive, 
and high-accuracy fraud detection solution. As blockchain technology continues to evolve, advanced AI-driven anomaly 
detection systems will play an increasingly critical role in ensuring transaction integrity and financial security in decentralized 
ecosystems.
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